精英家教网 > 初中数学 > 题目详情

某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:

(1)此次抽样调查的样本容量是   

(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.

(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

(1)100;(2)补图见解析;(3)39600户. 【解析】试题分析:(1)根据统计图可知“10吨~15吨”的用户10户占10%,从而可以求得此次调查抽取的户数; (2)根据(1)中求得的用户数与条形统计图可以得到“15吨~20吨”的用户数,进而求得扇形图中“15吨~20吨”部分的圆心角的度数; (3)根据前面统计图的信息可以得到该地区20万用户中约有多少用户的用水全部享受基本...
练习册系列答案
相关习题

科目:初中数学 来源:2017年辽宁省营口市大石桥市水源镇中考数学模拟试卷 题型:单选题

如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( )

A. B.

C. D.

C 【解析】 试题分析:过A作AD⊥x轴于D,根据勾股定理和含30度角的直角三角形的性质求出AD,根据三角形的面积即可求出答案. 【解析】 过A作AD⊥x轴于D, ∵OA=OC=4,∠AOC=60°, ∴OD=2, 由勾股定理得:AD=2, ①当0≤t<2时,如图所示,ON=t,MN=ON=t,S=ON•MN=t2; ②2≤t≤4时,ON=t,MN...

查看答案和解析>>

科目:初中数学 来源:2017年内蒙古乌兰察布市中考数学一模试卷 题型:解答题

我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.

(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;

(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?

(1)y=﹣5x+2200(300≤x≤350);(2)售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元 【解析】试题分析:(1)、销售量=200+50×(降价的数量÷10)得出答案;(2)、根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,得出不等式组,从而得出x的取值范围;(3)、根据总利润=单件利润×数...

查看答案和解析>>

科目:初中数学 来源:2017年内蒙古乌兰察布市中考数学一模试卷 题型:单选题

一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是(  )

A. B. C. D.

D 【解析】画树形图得: ∵共有20种等可能的结果,其中2个球的颜色不相同的有12种情况, ∴其中2个球的颜色不相同的概率是; 故选D.

查看答案和解析>>

科目:初中数学 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题

我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”,设BC=a,AC﹣b,AB=c.

【特例探索】

(1)如图1,当∠ABE=45°,c=2时,a=   ,b=   ;如图2,当∠ABE=30°,c=4时,a=   ,b=   

【归纳证明】

(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;

【拓展应用】

(3)如图4,在?ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3.求AF的长.

(1)a=2 ,b=2; a=2 ,b=2;(2)见解析;(3)4. 【解析】试题分析:(1)由等腰直角三角形的性质得到根据三角形中位线的性质,得到, 再由勾股定理得到结果; (2)连接EF,设PF=m,PE=n则AP=2m,PB=2n,类比着(1)即可证得结论. (3)连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,由点E.G分别是AD,CD的中点,得到EG是△...

查看答案和解析>>

科目:初中数学 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:填空题

边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为

. 【解析】试题分析:过点C作CD和CE垂直正方形的两个边长,如图, ∵一个正方形和一个等边三角形的摆放, ∴四边形DBEC是矩形, ∴CE=DB=, ∴△ABC的面积=AB•CE=×1×=.

查看答案和解析>>

科目:初中数学 来源:湖南省2017-2018学年七年级数学上期末复习检测数学试卷 题型:填空题

如图是地球表面的一部分,扇形A表示地球某几种水域占总面积的40%,则此扇形的圆心角为________.

144 【解析】利用扇形A表示的圆心角=扇形A表示的百分比×360°求解. 【解析】 扇形A表示的圆心角为40%×360°=144°. 故答案为:144°.

查看答案和解析>>

科目:初中数学 来源:2017年辽宁省营口市大石桥市水源镇中考数学模拟试卷(十) 题型:单选题

如图是2014年巴西世界杯吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是(  )

A. 27 B. 29 C. 30 D. 31

C 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为26,27,30,31,31,∴中位数是按从小到大排列后第3个数为:30。故选C。

查看答案和解析>>

同步练习册答案