精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD,

∵OE∥AB,

∴∠COE=∠CAD,∠EOD=∠ODA,

∵OA=OD,

∴∠OAD=∠ODA,

∴∠COE=∠DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

∴ED⊥OD,

∴ED是的切线;

(2)连接CD,交OE于M,

在Rt△ODE中,

∵OD=32,DE=2,

∵OE∥AB,

∴△COE∽△CAB,

∴AB=5,

∵AC是直径,

∵EF∥AB,

∴S△ADF=S梯形ABEF?S梯形DBEF

∴△ADF的面积为

【题型】解答题
【结束】
25

已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<. 【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a
练习册系列答案
相关习题

科目:初中数学 来源:广东省江门市江海区五校2018届九年级上学期期末联考数学试卷 题型:解答题

解方程:

, 【解析】试题分析:本题考查了一元二次方程的解法,根据完全平方公式配方,配方的方法是:先将常数项移到右边,然后两边都加一次项系数一半的平方. 【解析】 ,

查看答案和解析>>

科目:初中数学 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:解答题

在平面直角坐标系xOy中,抛物线经过点A(-3,4).

(1)求b的值;

(2)过点A作轴的平行线交抛物线于另一点B,在直线AB上任取一点P,作点A关于直线OP的对称点C;

①当点C恰巧落在轴时,求直线OP的表达式;

②连结BC,求BC的最小值.

(1)-3;(2)①OP的表达式为或,②BC的最小值为. 【解析】试题分析:(1)把点A坐标代入解析式即可得; (2)①由对称性可知OA=OC,AP=CP,由AP∥OC,可得∠1=∠2,再根据轴对称可得∠AOP=∠2,从而得∠AOP=∠1,得到AP=AO,再根据A点坐标即可得AP的长,从而得P点的坐标,利用待定系数法即可得解析式; ②以O为圆心,OA长为半径作⊙O,连接BO,交⊙...

查看答案和解析>>

科目:初中数学 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:填空题

已知∠α,∠β如图所示,则tan∠α与tan∠β的大小关系是__________.

tan∠αDE ,∴ <, ∴tan∠α

查看答案和解析>>

科目:初中数学 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题

已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为( )

A. B. C. D.

D 【解析】设解析式为: ,则有k=IR ,由图可知当R=2时,I=3,所以k=6, 所以解析式为: , 故选D.

查看答案和解析>>

科目:初中数学 来源:2017-2018学年陕西安市九年级(上)期末数学试卷 题型:解答题

在?ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.

(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;

(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);

(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

(1)证明见解析(2)(3) 【解析】试题分析:(1)首先作交于点H,易证得≌,又由,可证得是等边三角形,继而证得结论; (2)首先作交于点H,作于点,易证得 ≌,又由 易得,继而证得结论; (3)首先作交于点H,易证得≌,继而可得是等腰直角三角形,则可求得答案. 试题解析:(1)证明:如图,作∠GAH=∠EAB交GE于点H. ∴∠GAB=∠HAE. ∵∠EAB=...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年陕西安市九年级(上)期末数学试卷 题型:解答题

如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.如图1,当n=1时,正三角形的边长a1=_____;如图2,当n=2时,正三角形的边长a2=_____;如图3,正三角形的边长an=_____(用含n的代数式表示).

【解析】分析:(1)设PQ与 交于点D,连接,得出OD= -O,用含的代数式表示OD,在△OD中,根据勾股定理求出正三角形的边长;(2)设PQ与 交于点E,连接O,得出OE=E-O,用含的代数式表示OE,在△OE中,根据勾股定理求出正三角形的边长;(3)设PQ与 交于点F,连接O,得出OF=F-O,用含an的代数式表示OF,在△OF中,根据勾股定理求出正三角形的边长an. 本题解析: ...

查看答案和解析>>

科目:初中数学 来源:北京市2017-2018学年第一学期八年级数学期中试卷 题型:解答题

阅读下列材料

通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:

我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.

如: 这样的分式就是假分式;再如: 这样的分式就是真分式.

类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).

如:

再如:

解决下列问题:

(1)分式 分式(填“真分式”或“假分式”);

(2)假分式可化为带分式 的形式;

(3)如果分式的值为整数,那么x的整数值为

(1)真;(2);(3)0,-2,2,-4. 【解析】试题分析: (1)根据阅读材料中的内容可知:分式是真分式; (2)参照阅读材料中的例子,把分式的分子化为即可把原分式化为带分式; (3)先把分式化成带分式的形式可得: ,由原分式的值为整数,可得的值为整数,由此即可分析得到整数的值. 试题解析: (1)由“真分式、假分式”的定义可知,分式是真分式; (2...

查看答案和解析>>

科目:初中数学 来源:北京市分校2017-2018学年度第一学期期中初二数学试卷 题型:填空题

空气的单位体积质量是0.001239克/立方厘米,0.001239用科学记数法表示为___.

1.239×10-3 【解析】. 故答案为: .

查看答案和解析>>