精英家教网 > 初中数学 > 题目详情

已知扇形的圆心角为60°,半径为2,则扇形的弧长为________(结果保留π).

【答案】

【解析】试题解析:依题意,n=60,r=2,

∴扇形的弧长=

【题型】填空题
【结束】
13

如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为________ 

6 【解析】试题分析:根据射影定理得到AD2=CD•BD,代入计算即可得到答案. 【解析】 ∵∠BAC=90°,AD⊥BC, ∴AD2=CD•BD=36, ∴AD=6, 故答案为:6.
练习册系列答案
相关习题

科目:初中数学 来源:2017年辽宁省营口市大石桥市水源镇中考数学模拟试卷(二) 题型:单选题

小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是(  )

A. B.

C. D.

B 【解析】试题解析:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得: , 即: , 故选B.

查看答案和解析>>

科目:初中数学 来源:2017年湖北省宜昌市中考数学模拟试卷(三) 题型:解答题

如图,在平行四边形ABCD中,∠ABC和∠ADC的平分线分别交对边于点E、F,交四边形的对角线AC于点G、H.求证:AH=CG.

证明见解析 【解析】试题分析:先根据平行四边形的性质,利用ASA判定△ADH≌△CBG;再根据全等三角形的对应边相等,从而得到AH=CG. 试题解析:∵ABCD为平行四边形,BE、DF分别为角平分线, ∴AD=CB,∠DAH=∠BCG,∠CBG=∠ADH. ∴△ADH≌△CBG. ∴AH=CG.

查看答案和解析>>

科目:初中数学 来源:浙江省金华市2018届九年级上册期末模拟数学试卷 题型:解答题

如图,在网格图中的△ABC与△DEF是否成位似图形?说明理由.如果是,同时指出它们的位似中心.

 

【答案】是位似图形,位似中心为P,理由见解析

【解析】试题分析:由题中的图形可以看出△ABC∽△DEF,进而又有位似中心,即可得其为位似图形.

试题解析:是位似图形,位似中心为P.

理由:∵AB∥DE,AC∥FD,

∴△ABC∽△DEF,

又其每组对应点所在的直线都经过同一个点P,

所以其为位似图形.

【题型】解答题
【结束】
25

如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式.

(2)若点M是抛物线F1位于第二象限图象上一点,求△AMC的面积最大时点M的坐标及S△AMC的最大值.

(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

(1)y=﹣x2﹣x+4; (2)当a=﹣时,S△AMC有最大值,最大值为9,此时,M(﹣,5); (3)当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0). 【解析】试题分析:(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边...

查看答案和解析>>

科目:初中数学 来源:浙江省金华市2018届九年级上册期末模拟数学试卷 题型:填空题

如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__.

【答案】

【解析】过点A作AD⊥y轴于点D,过点B作BE⊥y轴于点E,过点A作AF⊥BE轴于点F,如图所示.

∵∠ACB=90°,

∴∠ACD+∠BCE=90°,

又∵AD⊥y轴,BE⊥y轴,

∴∠ACD+∠CAD=90°,∠BCE+∠CBE=90°,

∴∠ACD=∠CBE,∠BCE=∠CAD.

在△ACD和△CBE中,由

∴△ACD≌△CBE(ASA).

设点B的坐标为(m,﹣)(m<0),则E(0,﹣),点D(0,3﹣m),点A(﹣﹣3,3﹣m),

∵点A(﹣﹣3,3﹣m)在反比例函数y=﹣上,

,解得:m=﹣3,m=2(舍去).

∴点A的坐标为(﹣1,6),点B的坐标为(﹣3,2),点F的坐标为(﹣1,2),

∴BF=2,AF=4,

故答案为:2

【点睛】

过点A作AD⊥y轴于点D,过点B作BE⊥y轴于点E,过点A作AF⊥BE轴于点F,根据角的计算得出“∠ACD=∠CBE,∠BCE=∠CAD”,由此证出△ACD≌△CBE;再设点B的坐标为(m,﹣),由三角形全等找出点A的坐标,将点A的坐标代入到反比例函数解析式中求出m的值,将m的值代入A,B点坐标即可得出点A,B的坐标,并结合点A,B的坐标求出点F的坐标,利用勾股定理即可得出结论.

【题型】填空题
【结束】
18

二次函数y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,则m=________.

【解析】试题解析:∵二次函数有最小值﹣2, ∴y=﹣, 解得:m=.

查看答案和解析>>

科目:初中数学 来源:浙江省金华市2018届九年级上册期末模拟数学试卷 题型:单选题

不透明的口袋中装有除颜色外其余均相同的2个白球、2个黄球、4个绿球,从中任取一球出来,它不是黄球的概率是( )

A. B. C. D.

B 【解析】 试题分析:由不透明的口袋中装有除颜色外其余均相同的2个白球、2个黄球、4个绿球,直接利用概率公式求得=. 故选B.

查看答案和解析>>

科目:初中数学 来源:浙江省金华市2018届九年级上册期末模拟数学试卷 题型:单选题

当A为锐角,且<cos∠A<时,∠A的范围是(  )

A. 0°<∠A<30° B. 30°<∠A<60° C. 60°<∠A<90° D. 30°<∠A<45°

B 【解析】试题解析:∵cos60°=, cos30°=, ∴30°<∠A<60°. 故选B.

查看答案和解析>>

科目:初中数学 来源:2017年河北省中考数学模拟试卷 题型:单选题

若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是(  )

A. a<b B. ﹣a<b C. |a|<|b| D. ﹣a>﹣b

C 【解析】根据数轴的特征∵b0,∴?a>b,∴选项B不正确; ∵b?a>0,∴选项D不正确. 故选:C.

查看答案和解析>>

科目:初中数学 来源:2017年湖南省郴州市汝城县濠头学校中考数学模拟试卷 题型:填空题

如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为_____.

【解析】试题解析: 如图,过点B作BD⊥x轴于D, ∵A(0,2),B(5,3), ∴OA=2,BD=3,OD=5, 根据题意得:∠ACO=∠BCD, ∵∠AOC=∠BDC=90°, ∴△AOC∽△BDC, ∴OA:BD=OC:DC=AC:BC=2:3, ∴OC=5×=2, ∴CD=OD-OC=3, ∴AC==2,BC==3, ∴AC+B...

查看答案和解析>>

同步练习册答案