如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
![]()
科目:初中数学 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:单选题
使分式
有意义的x的取值范围是( )
A. x>2 B. x<2 C. x≠2 D. x≥2
C 【解析】【解析】 根据题意得:x﹣2≠0,解得:x≠2.故选C.查看答案和解析>>
科目:初中数学 来源:2017年江苏省苏州市中考数学三模试卷 题型:解答题
小明的家在某公寓楼AD内,他家的前面新建了一座大厦BC,小明想知道大厦的高度,但由于施工原因,无法测出公寓底部A与大厦底部C的直线距离,于是小明在他家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦的顶部B的仰角为30°,已知公寓楼AD的高为60米,请你帮助小明计算出大厦的高度BC.
大厦的高度BC为90米. 【解析】试题分析:在图中有两个直角三角形,即和 若设 则根据30°、60°角的正切值可求得BC和BE,然后根据二者之间的关系,得到一个关于的方程解答即可. 试题解析:如图,由题意知:四边形ACED是矩形, ∴AC=DE,DA=EC=60米, 设DE=x, 在Rt△BDE中, 在Rt△BAC中, 即 解得: (米). ...查看答案和解析>>
科目:初中数学 来源:2017年江苏省苏州市中考数学三模试卷 题型:单选题
一个长为4cm,宽为3cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板点A位置的变化为A→Al→A2,其中第二次翻滚被面上一小木块挡住,使木板与桌面成30°的角,则点A滚到A2位置时共走过的路径长为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:解答题
如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;
(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;
(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=
DQ,求点F的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:填空题
一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为 .
160°. 【解析】试题分析:∵圆锥的底面直径是80cm, ∴圆锥的侧面展开扇形的弧长为:πd=80π, ∵母线长90cm, ∴圆锥的侧面展开扇形的面积为: lr=×80π×90=3600π, ∴=3600π, 解得:n=160.查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:单选题
如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )
![]()
A. 1 B. 1或5 C. 3 D. 5
B 【解析】试题分析:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1; 当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5. 故选B.查看答案和解析>>
科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷 题型:解答题
一个不透明的口袋中装有形状大小相同的四个小球,每个小球上各标有一个数字,分别是1,2,3,4,现规定从袋中任意取出一个小球后,不放回,再任意取出一个小球,用画树状图(或列表)的方法,求两次取出的两个小球上数字之积是偶数的概率.
. 【解析】试题分析: 如图,按要求画出树状图,由图可知共有12种等可能结果,其中两次数字之积为偶数的有10种,由此可得所求概率为. 试题解析: 画树状图如下: 由树状图可知,共有12种等可能结果,其中数字之积是偶数的有10种, ∴两次取出的两个小球上数字之积是偶数的概率为.查看答案和解析>>
科目:初中数学 来源:江苏省苏州市2017年中考数学二模试卷 题型:解答题
如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.
![]()
(1)求证:AB是⊙O的切线.
(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=
,求
的值.
(3)在(2)的条件下,设⊙O的半径为3,求AB的长.
【答案】(1)证明见解析(2)
(3)
【解析】试题分析:(1)过O作OF⊥AB于F,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得
= tanD=
;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得
,设BO="y" ,BF=z,列二元一次方程组即可解决问题.
试题解析:(1)证明:作OF⊥AB于F
![]()
∵AO是∠BAC的角平分线,∠ACB=90º
∴OC=OF
∴AB是⊙O的切线
(2)连接CE
![]()
∵AO是∠BAC的角平分线,
∴∠CAE=∠CAD
∵∠ACE所对的弧与∠CDE所对的弧是同弧
∴∠ACE=∠CDE
∴△ACE∽△ADC
∴
= tanD=![]()
(3)先在△ACO中,设AE=x,
由勾股定理得
(x+3)²="(2x)" ²+3² ,解得x="2,"
∵∠BFO=90°=∠ACO
易证Rt△B0F∽Rt△BAC
得
,
设BO=y BF=z
![]()
即4z=9+3y,4y=12+3z
解得z=
y=![]()
∴AB=
+4=![]()
考点:圆的综合题.
【题型】解答题
【结束】
27
如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣
),点D在x轴上,且点D在点A的右侧.
(1)求菱形ABCD的周长;
(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;
(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com