科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
解不等式组
,并把解集在数轴上表示出来.
查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
在数学课上,老师提出如下问题:
已知:线段a,b.求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.(要求:尺规作图,保留作图痕迹,不写作法)
![]()
查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
![]()
(1)这次调查中,一共调查了________名学生;
(2)请补全两幅统计图;
(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.
(1)200;(2)答案见解析;(3). 【解析】试题分析:根据A组的人数和百分比求出总人数,然后分别求出C组的人数和B组的百分比,完成统计图;根据题意列出表格,求出概率. 试题解析:(1)40÷20%=200(名) (2)C组人数:200-40-70-30=60(名) B组百分比:70÷200×100%=35% 如图 (3)用表示喜欢跳绳的学生,用B表示喜欢足球的学生,列...查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
如图,已知函数
(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
![]()
(1)若AC=
OD,求a、b的值;
(2)若BC∥AE,求BC的长.
(1)a=,b=2;(2)BC=. 【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值; (2)设A点的坐标为:(m, ),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案. 试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上, ∴k=4,则y=, ∵...查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E,F,连接EF.
![]()
(1)求证:PF平分∠BFD;
(2)若tan∠FBC=
,DF=
,求EF的长.
查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
![]()
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析. 【解析】试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可; (2)利用函数交点坐标求法分别得出即可; (3)利用(2)的点的坐标以及结合得出函...查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
![]()
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈
,cos22°≈
,tan22°≈
)
查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+
)(x>0).
【探索研究】
小彬借鉴以前研究函数的经验,先探索函数y=x+
的图象性质.
(1)结合问题情境,函数y=x+
的自变量x的取值范围是x>0,下表是y与x的几组对应值.
x | … |
|
|
| 1 | 2 | 3 | m | … |
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①写出m的值;
②画出该函数图象,结合图象,得出当x= 时,y有最小值,y最小= ;
提示:在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.试用配方法求函数y=x+
(x>0)的最小值,解决问题(2)
【解决问题】
(2)直接写出“问题情境”中问题的结论.
![]()
查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
如图,△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,M为DE的中点.过点E作与AD平行的直线,交射线AM于点N.
(1)当A,B,C三点在同一条直线上时(如图1),求证:M为AN中点.
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一条直线上时(如图2),求证:△CAN为等腰直角三角形.
(3)将图1中的△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
![]()
![]()
![]()
查看答案和解析>>
科目: 来源:2017年内蒙古中考数学二模试卷 题型:解答题
如图,抛物线y=ax2+bx+1经过点(2,6),且与直线
相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).
![]()
(1)求抛物线的解析式;
(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;
(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.
(1);(2)PE的最大值为4;(3)点Q的坐标为:(, ),(, ). 【解析】试题分析:(1)根据题意得出B点坐标,再利用待定系数法求出抛物线解析式; (2)首先表示出P,E点坐标,再利用PE=PD-ED,结合二次函数最值求法进而求出PE的最大值; (3)根据题意可得:PE=BC,则-x2+4x=3,进而求出Q点的横坐标,再利用直线上点的坐标性质得出答案. 试题解析:(...查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com