科目: 来源:2017年吉林省中考数学六模试卷 题型:填空题
如图,直线y=x﹣4与x轴、y轴分别交于M、N两点,以坐标原点O为圆心的⊙O半径为2,将⊙O沿x轴向右平移,当⊙O恰好与直线MN相切时,平移的最小距离为_____.
![]()
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
先化简,再求值:
,其中x=4.
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起就配成了紫色,其中A盘中红色和蓝色均为半圆,B盘中红色、蓝色、绿色所在扇形圆心角均为120度).小亮和小刚同时用力转动两个转盘,当转盘停下时,两枚指针停留的区域颜色刚好配成紫色时小亮获胜,否则小刚获胜.判断这个游戏对双方是否公平,并借助树状图或列表说明理由.
![]()
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
列方程解应用题
根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路.铺设600米后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?
【解析】 设原计划每天铺设公路x米,根据题意,得……………………1分 . ……………………3分 去分母,得 1200+4200=18x(或18x=5400) 解得. ……………………4分 经检验, 是原方程的解且符合题意. ……………………5分 答:原计划每天铺设公路300米. 【解析】试题分析:设原计划每天铺设公路x米,根据实际每天修建公路的长度是原计划的2...查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
如图,在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AFCE是平行四边形.
![]()
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
吉林省广播电视塔(简称“吉塔”)是我省目前最高的人工建筑,也是俯瞰长春市美景的最佳去处.某科技兴趣小组利用无人机搭载测量仪器测量“吉塔”的高度.已知如图将无人机置于距离“吉塔”水平距离138米的点C处,则从无人机上观测塔尖的仰角恰为30°,观测塔基座中心点的俯角恰为45°.求“吉塔”的高度.(注:
≈1.73,结果保留整数)
![]()
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 数 | 1 | 2 | 8 | 11 | 5 |
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是 个,中位数是 个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.
![]()
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发匀速前行,且途中休息一段时间后继续以原速前行.家到公园的距离为2000m,如图是小明和爸爸所走的路程S(m)与步行时间t(min)的函数图象.
(1)直接写出BC段图象所对应的函数关系式(不用写出t的取值范围).
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早18分钟到达公园,则小明在步行过程中停留的时间需减少 分钟.
![]()
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),直接写出线段AD与NE的数量关系为 .
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),判断△ACN是什么特殊三角形并说明理由.
(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.若AC=3
,AD=1,则四边形ACEN的面积为 .
![]()
查看答案和解析>>
科目: 来源:2017年吉林省中考数学六模试卷 题型:解答题
如图,在△ABC中,AB=AC=5,AB边上的高CD=4,点P从点A出发,沿AB以每秒3个单位长度的速度向终点B运动,当点P不与点A、B重合时,过点P作PQ⊥AB,交边AC或边BC于点Q,以PQ为边向右侧作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)直接写出tanB的值为 .
(2)求点M落在边BC上时t的值.
(3)当正方形PQMN与△ABC重叠部分为四边形时,求S与t之间的函数关系式.
(4)边BC将正方形PQMN的面积分为1:3两部分时,直接写出t的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com