科目: 来源:2017-2018学年陕西安市九年级(上)期末数学试卷 题型:解答题
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
![]()
查看答案和解析>>
科目: 来源:2017-2018学年陕西安市九年级(上)期末数学试卷 题型:解答题
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
![]()
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌![]()
即可得![]()
,则可证得![]()
为![]()
的切线;![]()
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得![]()
的长,又由OE∥AB,证得![]()
根据相似三角形的对应边成比例,即可求得![]()
的长,然后利用三角函数的知识,求得![]()
与![]()
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.![]()
试题解析:(1)证明:连接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;![]()
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEF?S梯形DBEF
∴△ADF的面积为![]()
![]()
【题型】解答题
【结束】
25
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
![]()
查看答案和解析>>
科目: 来源:2017-2018学年陕西安市九年级(上)期末数学试卷 题型:解答题
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
![]()
【答案】(1)b=﹣2a,顶点D的坐标为(﹣
,﹣
);(2)
;(3) 2≤t<
.
【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;
(2)把点
代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得的面积即可;![]()
(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.
试题解析:(1)∵抛物线
有一个公共点M(1,0),
∴a+a+b=0,即b=?2a,
∴抛物线顶点D的坐标为
(2)∵直线y=2x+m经过点M(1,0),
∴0=2×1+m,解得m=?2,
∴y=2x?2,
则
得
∴(x?1)(ax+2a?2)=0,
解得x=1或
∴N点坐标为
∵a<b,即a<?2a,
∴a<0,
如图1,设抛物线对称轴交直线于点E,
![]()
∵抛物线对称轴为
设△DMN的面积为S,
(3)当a=?1时,
抛物线的解析式为:
有
解得:
∴G(?1,2),
∵点G、H关于原点对称,
∴H(1,?2),
设直线GH平移后的解析式为:y=?2x+t,
?x2?x+2=?2x+t,
x2?x?2+t=0,
△=1?4(t?2)=0,
当点H平移后落在抛物线上时,坐标为(1,0),
把(1,0)代入y=?2x+t,
t=2,
∴当线段GH与抛物线有两个不同的公共点,t的取值范围是
![]()
【题型】解答题
【结束】
26
摇椅是老年人很好的休闲工具,右图是一张摇椅放在客厅的侧面示意图,摇椅静止时,以O为圆心OA为半径的
的中点P着地,地面NP与
相切,已知∠AOB=60°,半径OA=60cm,靠背CD与OA的夹角∠ACD=127°,C为OA的中点,CD=80cm,当摇椅沿
滚动至点A着地时是摇椅向后的最大安全角度.
(1)静止时靠背CD的最高点D离地面多高?
(2)静止时着地点P至少离墙壁MN的水平距离是多少时?才能使摇椅向后至最大安全角度时点D不与墙壁MN相碰.
(精确到1cm,参考数据π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36,
=1.41,
=1.73)
![]()
查看答案和解析>>
科目: 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题
实数a,b,c,d在数轴上的对应点位置如图所示,这四个数中,绝对值最小的是
![]()
A. a B. b C. c D. d
C 【解析】根据数轴上某个数与原点的距离的大小求得结论. 【解析】 由图可知:c到原点O的距离最短, 所以在这四个数中,绝对值最小的是c. 故选C. “点睛”本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.查看答案和解析>>
科目: 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题
如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题
右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为( )(注:比例尺等于图上距离与实际距离的比)
![]()
A. 1.5公里 B. 1.8公里 C. 15公里 D. 18公里
B 【解析】测得图上距离为3cm,设实际距离为xcm,则有: 3:x=1:60000, 解得:x=180000cm=1800米=1.8公里, 故选B.查看答案和解析>>
科目: 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题
已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题
二次函数的部分图象如图所示,对称轴是
,则这个二次函数的表达式为( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题
如图,已知⊙O的半径为6,弦AB的长为8,则圆心O到AB的距离为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源:北京市顺义区2018届初三上学期期末考试数学试卷 题型:单选题
已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4则四边形DBCE的面积是( )
![]()
A. 6 B. 9 C. 21 D. 25
C 【解析】∵DE//BC, ∴△ADE∽△ABC, ∴ , ∵AD=2,BD=3,AB=AD+BD, ∴, ∵S△ADE=4, ∴S△ABC=25, ∴S四边形DBCE=S△ABC-S△ADE=25-4=21, 故选C.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com