科目: 来源:2018年济南市九年级学业水平模拟试卷(一) 题型:解答题
如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN.
求证:四边形ABCD是菱形.
![]()
查看答案和解析>>
科目: 来源:2018年济南市九年级学业水平模拟试卷(一) 题型:解答题
某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
查看答案和解析>>
科目: 来源:2018年济南市九年级学业水平模拟试卷(一) 题型:解答题
某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.
![]()
(1)m= ,n= ;
(2)请补全图中的条形图;
(3)扇形统计图中,足球部分的圆心角是 度;
(4)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱踢足球.
查看答案和解析>>
科目: 来源:2018年济南市九年级学业水平模拟试卷(一) 题型:解答题
如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,若BC=9,tan∠CDA=
,求BE的长.
![]()
查看答案和解析>>
科目: 来源:2018年济南市九年级学业水平模拟试卷(一) 题型:解答题
如图所示,抛物线y=
﹣
x﹣4与x轴交于点A、B,与y 轴相交于点C.
(1)求直线BC的解析式;
(2)将直线BC向上平移后经过点A得到直线l:y=mx+n,点D在直线l上,若以A、B、C、D为顶点的四边形是平行四边形,求出点D的坐标.
![]()
查看答案和解析>>
科目: 来源:2018年济南市九年级学业水平模拟试卷(一) 题型:解答题
【问题背景】
如图①所示,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
【类比研究】
如图②所示,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)连结AE,若AF=DF,AB=7,求△DEF的边长.
![]()
查看答案和解析>>
科目: 来源:2018年济南市九年级学业水平模拟试卷(一) 题型:解答题
已知点A(-2,2),B(8,12)在抛物线y=ax2+bx上.
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求
之值(用含m的代数式表示);
(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.
![]()
查看答案和解析>>
科目: 来源:江苏省常州市天宁分校2016-2017学年八年级(下)第一次调研数学试卷 题型:单选题
随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源:江苏省常州市天宁分校2016-2017学年八年级(下)第一次调研数学试卷 题型:单选题
下列调查中,最适合采用普查方式的是( )
A. 对长江流域水质情况的调查
B. 对乘坐飞机的旅客是否携带违禁物品的调查
C. 对一个社区每天丢弃塑料袋数量的调查
D. 对常州电视台“生活369”栏目收视率的调查
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com