相关习题
 0  52199  52207  52213  52217  52223  52225  52229  52235  52237  52243  52249  52253  52255  52259  52265  52267  52273  52277  52279  52283  52285  52289  52291  52293  52294  52295  52297  52298  52299  52301  52303  52307  52309  52313  52315  52319  52325  52327  52333  52337  52339  52343  52349  52355  52357  52363  52367  52369  52375  52379  52385  52393  366461 

科目: 来源:北京市期末题 题型:解答题

某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克、经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克。
(1)如果市场某天销售这种水果盈利了6000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?
(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元,若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?

查看答案和解析>>

科目: 来源:北京市期末题 题型:解答题

已知:抛物线y=﹣x2﹣2(a﹣1)x﹣(a2﹣2a)与x轴交于点A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B两点的坐标(用a表示);
(2)设抛物线的顶点为C,求△ABC的面积;
(3)若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的解析式及线段PQ的长的取值范围。

查看答案和解析>>

科目: 来源:湖北省期中题 题型:解答题

已知,如图,在平面直角坐标系中,以BC为直径的⊙M交x轴正半轴于点A、B,交y轴正半轴于点E、F,过点C作CD垂直y轴,垂足为点D,连接AM并延长交⊙M于点P,连接PE。
(1)求证:∠FAO=∠EAM;
(2)若二次函数y=﹣x2+px+q的图象经过点B、C、E,且以C为顶点,当点B的横坐标等于2时,四边形OECB的面积是,求这个二次函数的解析式。

查看答案和解析>>

科目: 来源:河北省期末题 题型:解答题

如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒)
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
(1)求抛物线的解析式及点C的坐标;
(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒).
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).

查看答案和解析>>

科目: 来源:四川省期末题 题型:解答题

如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若矩形DEFG沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

查看答案和解析>>

科目: 来源:山东省期末题 题型:解答题

如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,PE=PB.
(1)求证:①PE=PD; ②PE⊥PD;
(2)设AP=x,△PBE的面积为y.求出y关于x的函数关系式.

查看答案和解析>>

科目: 来源:湖北省期中题 题型:解答题

已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(﹣1,0)。
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

已知抛物线y=x2+px+q 与x轴交于A、B两点(点A在原点的左侧,点B在原点的右侧)与y轴的负半轴交于点C,若∠ACB=90°,且,求△ABC外接圆的面积。

查看答案和解析>>

同步练习册答案