相关习题
 0  52233  52241  52247  52251  52257  52259  52263  52269  52271  52277  52283  52287  52289  52293  52299  52301  52307  52311  52313  52317  52319  52323  52325  52327  52328  52329  52331  52332  52333  52335  52337  52341  52343  52347  52349  52353  52359  52361  52367  52371  52373  52377  52383  52389  52391  52397  52401  52403  52409  52413  52419  52427  366461 

科目: 来源:期末题 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)的图象经过一次函数y=- x+3的图象与x轴、y轴的交点,并且经过点(1,1),求这个二次函数的关系式。

查看答案和解析>>

科目: 来源:贵州省中考真题 题型:解答题

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:解答题

在直角坐标系中,点A是抛物线yx2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.
(1)如图1,当点A的横坐标为       时,矩形AOBC是正方形;
(2)如图2,当点A的横坐标为时,
①求点B的坐标;
②将抛物线yx2作关于x轴的轴对称变换得到抛物线y=﹣x2,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:解答题

如图,经过原点的抛物线轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP。
(1)当时,求点A的坐标及BC的长;
(2)当时,连结CA,问为何值时
(3)过点P作,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并定出相对应的点E坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:贵州省中考真题 题型:解答题

如图已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A(3,0),B(0,3),C(1,0)三点。
(1)求抛物线的解析式;
(2)若点D的坐标为(-1,0),在直线上有一点P,使△ABO与△ADP相似,求出点P的坐标;
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由

查看答案和解析>>

科目: 来源:福建省期末题 题型:解答题

某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件。若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系。(如图)
(1)求y与x的函数关系式;
(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具日销售量4件和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?
(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图,在平面直角坐标系xOy 中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C.以直线x=1为对称轴的抛物线  ( 为常数,且≠0)经过A,C两点,并与x轴的正半轴交于点B.  
(1)求的值及抛物线的函数表达式;  
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;  
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于两点,试探究 是否为定值,并写出探究过程.

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图,在平面直角坐标系xOy 中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C.以直线x=1为对称轴的抛物线  ( 为常数,且≠0)经过A,C两点,并与x轴的正半轴交于点B.  
(1)求的值及抛物线的函数表达式;  
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;  
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于两点,试探究 是否为定值,并写出探究过程.

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图,在□OABC 中,点A 在x 轴上,∠AOC=60°,0C=4cm,OA=8cm,动点P从点O出发,以1cm /s 的速度沿线段OA→AB 运动;动点Q同时从点O出发,以acm /s 的速度沿线段OC →CB 运动,其中一点先到达终点B 时,另一点也随之停止运动,设运动时间为t 秒。
(1) 填空:点C 的坐标是(______ ,______) ,对角线OB 的长度是_______cm ;
(2) 当a=1 时,设△OPQ 的面积为S ,求S 与t 的函数关系式,并直接写出当t 为何值时,S 的值最大?        
(3) 当点P 在OA 边上,点Q 在CB 边上时,线段PQ 与对角线OB 交于点M. 若以O 、M 、P为顶点的三角形与△OAB 相似,求a 与t 的函数关系式,并直接写出t 的取值范围.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E。
(1)画出△ECD关于边CD所在直线为对称轴的对称图形△E1CD,并求出点E1的坐标;
(2)求经过C、E1、B三点的抛物线的函数表达式;
(3)请探求经过C、E1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由。

查看答案和解析>>

同步练习册答案