相关习题
 0  52307  52315  52321  52325  52331  52333  52337  52343  52345  52351  52357  52361  52363  52367  52373  52375  52381  52385  52387  52391  52393  52397  52399  52401  52402  52403  52405  52406  52407  52409  52411  52415  52417  52421  52423  52427  52433  52435  52441  52445  52447  52451  52457  52463  52465  52471  52475  52477  52483  52487  52493  52501  366461 

科目: 来源:吉林省中考真题 题型:解答题

如图,在平面直角坐标系中,直线y=-x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点,以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S。
(1)求点P的坐标;
(2)当b值由小到大变化时,求S与b的函数关系式;
(3)若在直线y=-x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围;
(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为(5,),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒。
(1)求∠BAO的度数。
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度。
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标。
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台,假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台,(注:利润=销售价-进价)
(1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式;
(2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

如图,圆在正方形的内部沿着正方形的四条边运动一周,并且始终保持与正方形的边相切。
(1)在图中,把圆运动一周覆盖正方形的区域用阴影表示出来;
(2)当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大?并说明理由。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上,关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上。

(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围。

查看答案和解析>>

科目: 来源:北京中考真题 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点。
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A,求使点P运动的总路径最短的点 E、点F的坐标,并求出这个最短总路径的长。

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式;
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m,为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴上,设矩形ABCD的周长为l求l的最大值;
II.如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:上海模拟题 题型:填空题

请你写出一个二次函数解析式,使其图像的顶点在y轴上,且在y轴右侧图像是下降的。(      )

查看答案和解析>>

科目: 来源:北京期末题 题型:单选题

已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图,在直角坐标系中,O为原点,点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2,二次函数y=x2+mx+2的图象经过点A、B,顶点为D。
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将上述二次函数图象沿y轴向上或向下平移后经过点C,请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1,点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标。

查看答案和解析>>

同步练习册答案