相关习题
 0  52392  52400  52406  52410  52416  52418  52422  52428  52430  52436  52442  52446  52448  52452  52458  52460  52466  52470  52472  52476  52478  52482  52484  52486  52487  52488  52490  52491  52492  52494  52496  52500  52502  52506  52508  52512  52518  52520  52526  52530  52532  52536  52542  52548  52550  52556  52560  52562  52568  52572  52578  52586  366461 

科目: 来源:黑龙江省中考真题 题型:解答题

如图,点坐标分别为(4,0)、(0,8),点C是线段上一动点,点E在x轴正半轴上,四边形是矩形,且.设,矩形重合部分的面积为.根据上述条件,回答下列问题:
(1)当矩形的顶点D在直线AB上时,求t的值;
(2)当时,求S的值;
(3)直接写出S与t的函数关系式;(不必写出解题过程)
(4)若,则t=_____。

查看答案和解析>>

科目: 来源:河北省期末题 题型:解答题

在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm. 现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动. 如果点P的速度是4cm /秒,点Q的速度是2cm /秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动。设运动的时间为t秒求:
(1)用含t的代数式表示Rt△CPQ的面积S;
(2)当t=3秒时,这时,P、Q两点之间的距离是多少?
(3)当t为多少秒时,以点C、P、Q为顶点的三角形与△ABC 相似?

查看答案和解析>>

科目: 来源:海南省中考真题 题型:解答题

如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB. (1)求证:① PE=PD ; ② PE⊥PD;
(2)设AP=x, △PBE的面积为y.
① 求出y关于x的函数关系式,并写出x的取值范围;
② 当x取何值时,y取得最大值,并求出这个最大值.

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

(1)如图,是抛物线图象上的三点,若三点的横坐标从左至右依次为1,2,3.求的面积.
(2)若将(1)问中的抛物线改为,其他条件不变,请分别直接写出两种情况下的面积.
(3)现有一抛物线组:;依据变化规律,请你写出抛物线组第n个式子的函数解析式;现在x轴上有三点.经过向x轴作垂线,分别交抛物线组;…;.记,…,,试求的值.
(4)在(3)问条件下,当时有的值不小于,请探求此条件下正整数是否存在最大值,若存在,请求出此值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

如图1,抛物线经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B。
(1)求此抛物线的解析式;
(2)若直线将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数, m>1,n>0.
(1)请你确定n的值和点B的坐标;
(2)当动点P是经过点O,C的抛物线y=ax2+bx+c的顶点,且在双曲线y=上时,求这时四边形OABC的面积.

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于两点.
(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

已知抛物线与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C。

(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;
(3)坐标平面内是否存在点,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)
(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.当每间客房每天的定价每涨10元时,就会有5间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用.
(1)请写出该宾馆每天的利润y(元)与每间客房涨价x(元)之间的函数关系式;
(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?
(3)请回答客房定价在什么范围内宾馆就可获得利润?

查看答案和解析>>

同步练习册答案