精英家教网 > 高中数学 > 题目详情
5.已知t>0,关于x的方程$\sqrt{2}-|x|=\sqrt{t-{x^2}}$,则这个方程的实数的个数是(  )
A.0或2B.0或2或3或4C.0或2或4D.0或1或2或3或4

分析 因为关于x的方程$\sqrt{2}-|x|=\sqrt{t-{x^2}}$等号两边均为正数,转化为C1:y=|x|-$\sqrt{2}$,C2:y=-$\sqrt{t-{x}^{2}}$的图象的交点问题,可通过在同一坐标系中做出函数C1:y=|x|-$\sqrt{2}$,C2:y=-$\sqrt{t-{x}^{2}}$,的图象,通过判断图象交点个数来判断方程的相异实根根数.

解答 解:令C1:y=|x|-$\sqrt{2}$,C2:y=-$\sqrt{t-{x}^{2}}$,
由于y=|x|-$\sqrt{2}$=$\left\{\begin{array}{l}{x-\sqrt{2},x≥0}\\{-x-\sqrt{2},x<0}\end{array}\right.$,
方程y=-$\sqrt{t-{x}^{2}}$平方得:x2+y2=t,(y≤0),
画出它们的图象,如图所示,一个是折线,一个是半个圆.
当圆心(0,0)到直线y=x-$\sqrt{2}$的距离等于半径时,
即$\frac{|-\sqrt{2}|}{\sqrt{2}}$=1=$\sqrt{t}$时,t=1;
当圆经过点(0,-$\sqrt{2}$)时,02+(-$\sqrt{2}$)2=t,⇒t=2.
利用数形结合知:当0<t<1或t>2时,方程无实数根;
当t=1时,方程有2个实数根;
当t=2时,方程有3个实数根;
当1<t<2时,方程有4个实数根.
综合,则这个方程实根的个数情况是 0或2或3或4.
故选:B.

点评 本题主要考查图象法判断方程的实根个数,关键是画出两个函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.命题“若x=3,则x2-9x+18=0”的逆命题、否命题和逆否命题中,假命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}前n项和为Sn,满足${S_n}=2{a_n}-2n(n∈{N^*})$
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)数列{bn}满足${b_n}=log_2^{{a_n}+2}$,Tn为数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和,若Tn<a对正实数a都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某高校在2016年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率;
(2)根据样本频率分布直方图估计样本的中位数;
(3)如果从“优秀”和“良好”的学生中分别选出3人与2人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.若f(x)=2f′(x),则$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$=$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知xy>0,则$\frac{y}{x+y}+\frac{2x}{2x+y}$的最小值为(  )
A.$4+2\sqrt{2}$B.$4-2\sqrt{2}$C.$2+\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知z∈C,“$z+\overline z=0$”是“z为纯虚数”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ln|1-x|的图象大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合$M=\left\{{x\left|{\frac{x-5}{x+1}≤0}\right.}\right\}$,N={-3,-1,1,3,5},则M∩N=(  )
A.{-3,-1,1,3,5}B.{-1,1,3,5}C.{1,3,5}D.{-3,-1,1,3,}

查看答案和解析>>

同步练习册答案