精英家教网 > 高中数学 > 题目详情
15.三棱柱ABC-A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为$\frac{π}{3}$,点D在棱AA1上,且AD=$\sqrt{3}$,AB=4.
(1)求证:OD⊥平面BB1C1C;
(2)求二面角B-B1C-A1的平面角的余弦值.

分析 (1)连接AO,说明$∠{A_1}AO=\frac{π}{3}$.证明OD⊥AA1.OD⊥BB1,证明OD⊥BC,推出OD⊥平面BB1C1C.
(2)以O为原点,分别以OA,OB,OA1所在的直线为x,y,z轴建立空间直角坐标系,求出相关点的坐标,求出平面BB1C1C的一个法向量,平面A1B1C的法向量,通过向量的数量积求解二面角B-B1C-A1的平面角的余弦角值.

解答 解:(1)连接AO,∵A1O⊥底面ABC,AO,BC?底面ABC,
∴BC⊥A1O,A1O⊥AO,且AA1与底面ABC所成的角为∠A1AO,即$∠{A_1}AO=\frac{π}{3}$.
在等边△ABC中,易求得$AO=2\sqrt{3}$.
在△AOD中,由余弦定理,得$OD=\sqrt{O{A^2}+A{D^2}-2OA•ADcos\frac{π}{3}}=3$,
∴OD2+AD2=12=OA2,即OD⊥AA1
又∵AA1∥BB1,∴OD⊥BB1.∵AB=AC,OB=OC,∴AO⊥BC,
又∵BC⊥A1O,AO∩A1O=O,∴BC⊥平面AA1O,
又∵OD?平面AA1O,∴OD⊥BC,又BC∩BB1=B,
∴OD⊥平面BB1C1C.-------(6分)
(2)如下图所示,以O为原点,分别以OA,OB,OA1所在的直线为x,y,z轴建立空间直角坐标系,

则$A({2\sqrt{3},0,0}),C({0,-2,0}),{A_1}({0,0,6}),B({0,2,0})$
故$\overrightarrow{{A_1}{B_1}}=\overrightarrow{AB}=({-2\sqrt{3},2,0}),\overrightarrow{{A_1}C}=({0,-2,-6})$
由(1)可知$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{A{A_1}}$,∴可得点D的坐标为$({\frac{{3\sqrt{3}}}{2},0,\frac{3}{2}})$,∴平面BB1C1C的一个法向量是$\overrightarrow{OD}=({\frac{{3\sqrt{3}}}{2},0,\frac{3}{2}})$.
设平面A1B1C的法向量$\overrightarrow n=({x,y,z})$,由$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{{A_1}{B_1}}=0\\ \overrightarrow n•\overrightarrow{{A_1}C}=0\end{array}\right.$得$\left\{\begin{array}{l}-\sqrt{3}x+y=0\\ y+3z=0\end{array}\right.$令$x=\sqrt{3}$,则y=3,z=-1,则$n=({\sqrt{3},3,-1})$,
∴$cos<\overrightarrow{OD},\overrightarrow n>=\frac{{\overrightarrow{OD}•\overrightarrow n}}{{|{\overrightarrow{OD}}||{\overrightarrow n}|}}=\frac{{\sqrt{13}}}{13}$易知所求的二面角为钝二面角,
∴二面角B-B1C-A1的平面角的余弦角值是$-\frac{{\sqrt{13}}}{13}$-------(12分)

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=mt}\end{array}\right.$(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=cosa}\\{y=1+sina}\end{array}\right.$(a为参数).
(Ⅰ)若直线l与圆C的相交弦长不小于$\sqrt{2}$,求实数m的取值范围;
(Ⅱ)若点A的坐标为(2,0),动点P在圆C上,试求线段PA的中点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=x+\frac{1}{x}$.
(1)用定义证明f(x)在[1,+∞)上是增函数;
(2)求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线2x2-y2=16的实轴长等于4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个样本a,3,5,7的平均数是b,且a,b分别是数列{2n-2}(n∈N*)的第2项和第4项,则这个样本的方差是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数g(x)=ax3+2(1-a)x2-3ax在区间(-∞,$\frac{a}{3}$)内单调递减,则a的取值范围为(  )
A.a≥1B.a≤1C.a≥-1D.-1≤a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx.
(Ⅰ)设函数g(x)=$\frac{f(x)}{x-1}$,求g(x)的单调区间;
(Ⅱ)若方程f(x)=t有两个不相等的实数根x1,x2,求证:x1+x2$>\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合$A=\{x|{(\frac{1}{2})^x}≤1\}$,B={x|x2-2x-8≤0},则A∩B=(  )
A.{x|-2≤x≤0}B.{x|2≤x≤4}C.{x|0≤x≤4}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某班级有50名同学,一次数学测试平均成绩是92,其中学号为前30名的同学平均成绩为90,则后20名同学的平均成绩为95.

查看答案和解析>>

同步练习册答案