精英家教网 > 高中数学 > 题目详情
有穷数列1,23,26,29,…,23n+6的项数是(  )
A、3n+7B、3n+6
C、n+3D、n+2
考点:数列的概念及简单表示法
专题:等差数列与等比数列
分析:由有穷数列1,23,26,29,…,23n+6,可得指数为:0,3,6,9,…,3n+6为等差数列,即可得出.
解答: 解:由有穷数列1,23,26,29,…,23n+6
可得指数为:0,3,6,9,…,3n+6.
设3n+6为此数列的第k项,则3n+6=0+(k-1)×3,
解得k=n+3.
故选:C.
点评:本题考查了等差数列的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,D、E分别是BC和CC1的中点,已知AB=AC=AA1=4,∠BAC=90°.
(1)求证:B1D⊥平面AED;
(2)求二面角B1-AE-D的余弦值;
(3)求三棱锥A-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是(  )
A、(-∞,-1 )∪(2,+∞)
B、(-1,2)
C、(-2,1 )
D、(-∞,-2 )∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(
π
4
-x)的一个单调增区间是(  )
A、[-
π
4
π
2
]
B、[-
π
4
4
]
C、[-
4
,-
π
4
]
D、[-
4
π
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数f(x)=alnx+
1
2
ax2
-x(a∈R)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题p:曲线
x2
a-2
-
y2
6-a
=1为双曲线,命题q:函数f(x)=(4-a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
sinx
2+cosx

(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明;当a≥
1
3
时,对任何x≥0,都有f(x)≤ax.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-3x+2≤0},B={y|y=x2-2x+a},C={x|x2-ax-4≤0}.命题 p:A∩B≠∅,命题q:A⊆C.若命题p∧q为真命题,则a的范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算2sin14°•cos31°+sin17°等于(  )
A、
2
2
B、-
2
2
C、
3
2
D、-
3
2

查看答案和解析>>

同步练习册答案