分析 运用等差数列和等比数列的通项公式,可得a1+2b1<-2,m=a4+b3=a1+6+4b1,可令a1+4b1=k(a1+b1)+l(a1+2b1)=(k+l)a1+(k+2l)b1,运用恒等思想,可得k,l的方程,解方程可得k,l,再由不等式的性质,即可得到所求范围.
解答 解:a1+b1>0,a2+b2<0,
即为a1+2+2b1<0,
即a1+2b1<-2,
由m=a4+b3=a1+6+4b1,
可令a1+4b1=k(a1+b1)+l(a1+2b1)=(k+l)a1+(k+2l)b1,
由$\left\{\begin{array}{l}{k+l=1}\\{k+2l=4}\end{array}\right.$解得k=-2,l=3,
即有a1+4b1<0-6=-6,
则m=a1+6+4b1<0.
故答案为:(-∞,0).
点评 本题考查等差数列和等比数列的通项公式的运用,考查不等式的性质和待定系数法的运用,以及化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | MN长度的最小值是2 | B. | MN的长度是定值$\sqrt{2}$ | ||
| C. | 圆M面积的最小值是2π | D. | 圆M、N的面积和是定值8π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥1 | B. | a≤1 | C. | a≥-1 | D. | -1≤a≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com