相关习题
 0  21815  21823  21829  21833  21839  21841  21845  21851  21853  21859  21865  21869  21871  21875  21881  21883  21889  21893  21895  21899  21901  21905  21907  21909  21910  21911  21913  21914  21915  21917  21919  21923  21925  21929  21931  21935  21941  21943  21949  21953  21955  21959  21965  21971  21973  21979  21983  21985  21991  21995  22001  22009  266669 

科目: 来源:模拟题 题型:解答题

如图,底面ABC为正三角形,EA⊥平面ABC,DC⊥平面ABC,EA=AB=2DC=2a,设F为EB的中点。
(1)求证:DF∥平面ABC;
(2)求直线AD与平面AEB所成角的正弦值。

查看答案和解析>>

科目: 来源:0112 月考题 题型:证明题

如图,四边形ABCD是正方形,MA⊥平面ABCD,MA∥PB, PB=AB=2MA=2。
(1)求证:DM∥面PBC;
(2)求证:面PBD⊥面PAC。

查看答案和解析>>

科目: 来源:期末题 题型:解答题

如图,AB是圆O的直径,点C是圆O上的动点,过点A的直线VA垂直于圆O所在的平面ABC,VB与平面
ABC成30°的角,D,E分别是线段VB,VC的中点。
(1)求证:DE∥平面ABC;
(2)求证:平面VAC⊥平面VBC;
(3)当点C平分弧AB时,求二面角A-VB-C的正切值。

查看答案和解析>>

科目: 来源:江苏期中题 题型:填空题

关于直线m,n和平面α,β,有以下四个命题:
①若m∥α,n∥β,α∥β,则m∥n;
②若m∥n,mα,n⊥β,则α⊥β;
③若α∩β=m,m∥n,则n∥α且n∥β;
④若m⊥n,α∩β=m,则n⊥α或n⊥β.
其中正确的命题序号是(    )。

查看答案和解析>>

科目: 来源:江苏期末题 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.
已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)设点O是AB的中点,证明:OC平面A1B1C1
(II)求此几何体的体积;
(Ⅲ)点F为AA1上一点,若BF⊥平面COB1,求AF的长.

查看答案和解析>>

科目: 来源:山东省期末题 题型:解答题

如图所示,平面PAD⊥平面ABCD,ABCD为正方形,PA⊥AD,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.
(1)求证:BC∥平面EFG;
(2)求三棱锥E﹣AFG的体积.

查看答案和解析>>

科目: 来源:山东省月考题 题型:解答题

如图,在底面是直角梯形的四棱锥P﹣ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M为PD中点.
(Ⅰ) 求证:MC∥平面PAB;
(Ⅱ)在棱PD上找一点Q,使二面角Q﹣AC﹣D的正切值为

查看答案和解析>>

科目: 来源:期末题 题型:解答题

如图,在四棱锥O﹣ABCD中,底面ABCD是边长为1的菱形,,OA⊥底面ABCD,且OA=2,M为OA的中点,N为BC的中点.
(1)证明:直线MN∥平面OCD;
(2)求点N到平面OCD的距离.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,直三棱柱ABC-A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点。
(1)证明:MN′∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积。(椎体体积公式V=Sh,其中S为地面面积,h为高)

查看答案和解析>>

科目: 来源:期末题 题型:解答题

如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,
PA=PD=AD=2
(1)点M在线段PC上,PM=tPC,试确定t的值,使PA平面MQB;
(2)在(1)的条件下,若平面PAD⊥平面ABCD,求二面角M﹣BQ﹣C的大小.

查看答案和解析>>

同步练习册答案