相关习题
 0  21905  21913  21919  21923  21929  21931  21935  21941  21943  21949  21955  21959  21961  21965  21971  21973  21979  21983  21985  21989  21991  21995  21997  21999  22000  22001  22003  22004  22005  22007  22009  22013  22015  22019  22021  22025  22031  22033  22039  22043  22045  22049  22055  22061  22063  22069  22073  22075  22081  22085  22091  22099  266669 

科目: 来源:江苏模拟题 题型:解答题

如图,直三棱柱ABC-A1B1C1中,底面是以B为直角顶点的等腰直角三角形,AC=2,BB1=3,D为A1C1的中点,F在线段AA1上,
(Ⅰ)AF为何值时,CF⊥平面B1DF?
(Ⅱ)设AF=1,求平面B1CF与平面ABC所成的锐二面角的余弦值。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC。
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小。

查看答案和解析>>

科目: 来源:重庆市高考真题 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点.
(Ⅰ)证明:AE⊥平面PBC;
(Ⅱ)若AD=1,求二面角B-EC-D的平面角的余弦值.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(Ⅰ)证明:AB=AC;
(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.

查看答案和解析>>

科目: 来源:湖北省高考真题 题型:解答题

如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1。
(I)设P为AC的中点,Q在AB上且AB=3AQ。证明:PQ⊥OA;
(Ⅱ)求二面角O-AC-B的平面角的余弦值。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD,
(Ⅰ)证明:PA⊥BD;
(Ⅱ)设PD=AD=1,求棱锥D-PBC的高.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD,
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目: 来源:山东省高考真题 题型:证明题

如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°,
(Ⅰ)证明:AA1⊥BD;
(Ⅱ)证明:CC1∥平面A1BD。

查看答案和解析>>

科目: 来源:广东省模拟题 题型:解答题

如图,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且(0<λ<1)。
(1)求证:不论λ为何值,总有EF⊥平面ABC;
 (2)若λ=,求三棱锥A-BEF的体积。

查看答案和解析>>

科目: 来源:广东省高考真题 题型:解答题

如图,在椎体P-ABCD中,ABCD是边长为1的棱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点。
(1)证明:AD⊥平面DEF;
(2)求二面角P-AD-B的余弦值。

查看答案和解析>>

同步练习册答案