相关习题
 0  22053  22061  22067  22071  22077  22079  22083  22089  22091  22097  22103  22107  22109  22113  22119  22121  22127  22131  22133  22137  22139  22143  22145  22147  22148  22149  22151  22152  22153  22155  22157  22161  22163  22167  22169  22173  22179  22181  22187  22191  22193  22197  22203  22209  22211  22217  22221  22223  22229  22233  22239  22247  266669 

科目: 来源:广东省模拟题 题型:解答题

已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成角为θ,点B1在底面上的射影D落在BC上,
(1)求证:AC⊥平面BB1C1C;
(2)若,且当AC=BC=AA1=3时,求二面角C-AB-C1的大小。

查看答案和解析>>

科目: 来源:浙江省期末题 题型:解答题

如图,已知△AOB,∠AOB=,∠BAO=,AB=4,D为线段AB的中点。若△AOC是△AOB绕直线AO旋转而成的,记二面角B-AO-C的大小为θ。
(1)当平面COD⊥平面AOB时,求θ的值;
(2)当θ∈[]时,求二面角C-OD-B的余弦值的取值范围.

查看答案和解析>>

科目: 来源:0110 月考题 题型:解答题

如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB,D、E分别为棱C1C、B1C1的中点。
(1)求点E到平面ADB的距离;
(2)求二面角E-A1D-B的平面角的余弦值;
(3)在线段AC上是否存在一点F,使得EF⊥平面A1DB?若存在,确定其位置;若不存在,说明理由。

查看答案和解析>>

科目: 来源:广东省月考题 题型:解答题

如图,已知矩形ABCD的边AB=2 ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。
(1)求证:平面PCE⊥平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。

查看答案和解析>>

科目: 来源:山东省模拟题 题型:解答题

已知几何体ABCD-EFG中,ABCD是边长为2的正方形,ADEG与CDEF 都是直角梯形,且∠EDA=∠EDC=90°,EF∥CD,EG∥AD,EF=EG=DE=1。
(1)求证:AC∥平面BGF;
(2)在AD上求一点M,使GM与平面BFG 所成的角的正弦值为

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH 是四棱锥的高,E为AD中点。

(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值。

查看答案和解析>>

科目: 来源:0127 期中题 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥ABCD,PA=AD=4,AB=2,M为PD的中点,求直线PC与平面ABM所成的角的正弦值。

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:解答题

已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形,
(Ⅰ)证明:BN⊥平面C1NB1
(Ⅱ)求平面CNB1与平面C1NB1所成角的余弦值。

查看答案和解析>>

科目: 来源:浙江省模拟题 题型:解答题

如图,在直角梯形ABCP中,AB=BC=3,AP=6,CD⊥AP于D,现将△PCD沿线段CD折成60°的二面角P-CD-A,设E,F,G分别是PD,PC,BC的中点,
(Ⅰ)求证:PA∥平面EFG;
(Ⅱ)若M为线段CD上的动点,问点M在什么位置时,直线MF与平面EFG所成角为60°。

查看答案和解析>>

科目: 来源:海南省模拟题 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点,
(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;        
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值。

查看答案和解析>>

同步练习册答案