相关习题
 0  240663  240671  240677  240681  240687  240689  240693  240699  240701  240707  240713  240717  240719  240723  240729  240731  240737  240741  240743  240747  240749  240753  240755  240757  240758  240759  240761  240762  240763  240765  240767  240771  240773  240777  240779  240783  240789  240791  240797  240801  240803  240807  240813  240819  240821  240827  240831  240833  240839  240843  240849  240857  266669 

科目: 来源: 题型:解答题

18.在平面直角坐标系xoy中,已知圆C的圆心在x正半轴上,半径为2,且与直线x-$\sqrt{3}$y+2=0相切
(1)求圆C的方程
(2)在圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若(2x-1)6=a1x6+a2x5+a3x4+a4x3+a5x2+a6x+a7,则$\frac{{a}_{1}+{a}_{3}+{a}_{5}}{{a}_{2}+{a}_{4}+{a}_{6}}$=-1.

查看答案和解析>>

科目: 来源: 题型:选择题

16.设函数$f(x)={x^2}-\frac{1}{2}$,f'(x)是f(x)的导数,则函数g(x)=f'(x)cosx的部分图象可以为(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源: 题型:填空题

15.如图,为了探求曲线y=x2,x=2与x轴围成的曲边三角形OAP的面积,用随机模拟的方法向矩形OAPB内随机投点1080次,现统计落在曲边三角形OAP的次数360次,则可估算曲边三角形OAP面积为$\frac{8}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)求曲线C1的普通方程和直线C2的直角坐标方程;
(Ⅱ)设点P在C1上,点Q在C2上,求|PQ|的最小值及对应的点P的直角坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=ln(1+x)(x>0),g(x)=$\frac{ax}{x+2}$.
(Ⅰ)求f(x)在x=0处的切线方程;
(Ⅱ)若f(x)>g(x)对x∈(0,+∞)恒成立,求a的取值范围;
(Ⅲ)n∈N*时,比较$g(1)+g(\frac{1}{2})+g(\frac{1}{3})+…+g(\frac{1}{n})$与f(n)的大小并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在平面直角坐标系xoy中,已知圆O1与x轴正半轴及射线l:y=kx(x≥0)都相切.
(1)若k=$\frac{4}{3}$,且直线y=-2x+3被圆O1所截得的弦长为$\frac{{2\sqrt{5}}}{5}$,求圆O1的方程;
(2)若圆O2与x轴正半轴及射线l也都相切,且与圆O1都经过点(2,2),且两圆的半径之积为2,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设函数$f(x)=\left\{\begin{array}{l}m+{x^2},|x|≥1\\ x,|x|<1\end{array}\right.$的图象过点(1,1),则函数f(x)的值域是(-1,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

10.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生
(2)成绩优良与班级有关?
(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且${S_n}=2{n^2}+n$,n∈N*,在数列{bn}中,b1=1,bn+1=2bn+3,n∈N*
(1)求证:{bn+3}是等比数列;
(2)若cn=log2(bn+3),求数列$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$的前n项和Rn
(3)求数列{anbn}的前n项和Tn

查看答案和解析>>

同步练习册答案