分析 (1)先由AB=AC,点D是边BC的中点,根据等腰三角形三线合一的性质得出BD=CD,AD⊥BC,再由AE∥BD,DE∥AB,得出四边形AEDB为平行四边形,那么
AE=BD=CD,又AE∥DC,根据一组对边平行且相等的四边形是平行四边形得出四边形ADCE是平行四边形,又∠ADC=90°,根据有一个角是直角的平行四边形即可证明四边形ADCE是矩形;
(2)设AC与DE相交于点O.由DE∥AB,根据平行线的性质得出∠DOC=∠BAC=90°,即AC⊥DE,又由(1)知四边形ADCE是矩形,根据对角线互相垂直的矩形是正方形即可证明四边形ADCE是正方形.
解答 证明:(1)∵AB=AC,点D是边BC的中点,
∴BD=CD,AD⊥BC,
∴∠ADC=90°.
∵AE∥BD,DE∥AB,
∴四边形AEDB为平行四边形,
∴AE=BD=CD,
又∵AE∥DC,
∴四边形ADCE是平行四边形,
∵∠ADC=90°,
∴四边形ADCE是矩形;
(2)设AC与DE相交于点O.
∵DE∥AB,∠BAC=90°,
∴∠DOC=∠BAC=90°,
即AC⊥DE,
又∵由(1)知四边形ADCE是矩形,
∴四边形ADCE是正方形.
点评 本题考查了正方形的判定,矩形的判定,平行四边形的判定与性质,等腰三角形的性质,平行线的性质.熟练掌握定理与性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 选项 | 频数 | 频率 |
| A | 30 | M |
| B | n | 0.2 |
| C | 5 | 0.1 |
| D | 5 | 0.1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 调查该校全体女生 | |
| B. | 调查该校全体男生 | |
| C. | 调查该校七年级全体学生 | |
| D. | 调查该校七、八、九年级学生各100名 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com