精英家教网 > 初中数学 > 题目详情
3.如图,在△ABC中,AB=AC,点D是边BC的中点,过点A、D分别作BC与AB的平行线,相交于点E,连结EC、AD.
(1)求证:四边形ADCE是矩形;
(2)当∠BAC=90°时,求证:四边形ADCE是正方形.

分析 (1)先由AB=AC,点D是边BC的中点,根据等腰三角形三线合一的性质得出BD=CD,AD⊥BC,再由AE∥BD,DE∥AB,得出四边形AEDB为平行四边形,那么
AE=BD=CD,又AE∥DC,根据一组对边平行且相等的四边形是平行四边形得出四边形ADCE是平行四边形,又∠ADC=90°,根据有一个角是直角的平行四边形即可证明四边形ADCE是矩形;
(2)设AC与DE相交于点O.由DE∥AB,根据平行线的性质得出∠DOC=∠BAC=90°,即AC⊥DE,又由(1)知四边形ADCE是矩形,根据对角线互相垂直的矩形是正方形即可证明四边形ADCE是正方形.

解答 证明:(1)∵AB=AC,点D是边BC的中点,
∴BD=CD,AD⊥BC,
∴∠ADC=90°.
∵AE∥BD,DE∥AB,
∴四边形AEDB为平行四边形,
∴AE=BD=CD,
又∵AE∥DC,
∴四边形ADCE是平行四边形,
∵∠ADC=90°,
∴四边形ADCE是矩形;

(2)设AC与DE相交于点O.
∵DE∥AB,∠BAC=90°,
∴∠DOC=∠BAC=90°,
即AC⊥DE,
又∵由(1)知四边形ADCE是矩形,
∴四边形ADCE是正方形.

点评 本题考查了正方形的判定,矩形的判定,平行四边形的判定与性质,等腰三角形的性质,平行线的性质.熟练掌握定理与性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.△ABC中,∠ACB=90°,∠A=30°,AC=$\sqrt{3}$,将△ABC绕点C顺时针旋转α,
(1)当点B的对应点B′恰好落在AB边上时(如图),α=60°;
(2)在 (1)的条件下,将旋转后的图形沿射线CB平移,设平移的距离为x,平移后的图形与△ABC重叠部分的面积为y,求y与x的函数关系式,并直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.自从2012年12月4日中央公布“八项规定”以来,我市某中学积极开展“厉行勤俭节约,反对铺张浪费”的活动.为此,校学生会在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.学生会根据统计结果绘制了如下统计表和统计图,根据所提供的信息回答下列问题:
选项频数频率
A30M
Bn0.2
C50.1
D50.1
(1)这次被抽查的学生有多少人?
(2)求表中m,n的值,并补全条形统计图;
(3)该中学有学生2200名,请估计这餐晚饭有剩饭的学生人数,按平均每人剩10克米饭计算,这餐晚饭将浪费多少千克米饭?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简,再求值:4x(x-1)-(2x+1)(2x-1),其中x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.将直线y=3x向上平移1个单位,可以得到直线y=3x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若a、b满足$\sqrt{a-2}$+|b+1|=0,则$\frac{a}{{b}^{2}}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,AD是△ABC的一条中线,若BD=3,则BC=6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)$\sqrt{18}$-$\frac{2}{\sqrt{2}}$+|1-$\sqrt{2}$|
(2)1-$\frac{{x}^{2}-9}{{x}^{2}-6x+9}$÷$\frac{x+3}{x+4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.要了解某初级中学校的课外作业负担情况,下列抽样方法中比较合理的是(  )
A.调查该校全体女生
B.调查该校全体男生
C.调查该校七年级全体学生
D.调查该校七、八、九年级学生各100名

查看答案和解析>>

同步练习册答案