分析 由三角形内角和定理可求得∠ABC+∠ACB,再利用邻补角可求得∠DBC+∠ECB,根据角平分线的定义可求得∠OBC+∠OCB,在△BOC中利用三角形内角和定理可求得∠BOC.
解答 解:
∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-130°=230°,
∵BO、CO分别平分∠DBC和∠ECB,
∴∠OBC+∠OCB=$\frac{1}{2}$(∠DBC+∠ECB)=$\frac{1}{2}$×230°=115°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-115°=65°.
点评 本题主要考查三角形内角和定理,利用整体思想求得∠OBC+∠OCB是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com