精英家教网 > 初中数学 > 题目详情

如图,已知线段AB。

(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);

(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方),连接AM、AN。BM、BN。

求证:∠MAN=∠MBN。

 

【答案】

解:(1)作图如下:

(2)证明:根据题意作出图形如图,

∵点M、N在线段AB的垂直平分线l上,

∴AM=BM,AN=BN。

又 ∵MN=MN,∴△AMN≌△BMN(SSS)。

∴∠MAN=∠MBN。

【解析】(1)根据线段垂直平分线的性质作图。

(2)根据线段垂直平分线上的点到线段两端距离相等的性质,可得AM=BM,AN=BN。MN是公共边,从而SSS可证得△AMN≌△BMN,进而得到∠MAN=∠MBN的结论。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图:已知线段AB,点C在AB的延长线上,AC=
5
3
BC,D在AB的反向延长线上,BD=
3
5
DC.精英家教网
(1)在图上画出点C和点D的位置;
(2)设线段AB长为x,则BC=
 
;AD=
 
;(用含x的代数式表示)
(3)若AB=12cm,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为(  )
精英家教网
A、6cmB、5cmC、4cmD、3cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB,按下列要求作图:分别以A、B为圆心,大于
12
AB
的相同长度为半径画弧,设两段弧在AB上方的交点为M,连接AM,延长AM到C,使得AM=MC,连接BC(只要保留作图痕迹).根据所作图形,求证:∠ABC=90°.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB和CD相交于点O,线段OA=OD,OC=OB,求证:△OAC≌△ODB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知线段AB,延长AB至C,使得BC=
1
2
AB,若D是BC的中点,CD=2cm,则AC的长等于(  )
A、4cmB、8cm
C、10cmD、12cm

查看答案和解析>>

同步练习册答案