【题目】某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.
(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是.
(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
科目:初中数学 来源: 题型:
【题目】已知两直线L1:y=k1x+b1 , L2:y=k2x+b2 , 若L1⊥L2 , 则有k1k2=﹣1.
(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
(2)直线经过A(2,3),且与y=
x+3垂直,求解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形
中,
,
为
上一动点,
交
于
,过
作
交
于点
,过
作
于
,连结
.在以下四个结论中:①
;②
;③
;④
的周长为12.其中正确的结论有__________(填序号)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
对于任意一个三位数正整数n,如果n的各个数位上的数字互不相同,且都不为零,那么称这个数为“陌生数”,将一个“陌生数”的三个数位上的数字交换顺序,可以得到5个不同的新“陌生数”,把这6个陌生数的和与111的商记为M(n).例如n=123,可以得到132.213.231.312.321这5个新的“陌生数”,这6个“陌生数”的和为123+132+213+231+312+321=1332,因为
,所以M(123)=12.
(1)计算:M(125)和M(361)的值;
(2)设s和t都是“陌生数”,其中4和2分别是s的十位和个位上的数字,2和5分别是t的百位和个位上的数字,且t的十位上的数字比s的百位上的数字小2;规定:
.若
,则k的值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在锐角△ABC中,∠BAC=60,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①DF=EF;②AD∶AB=AE∶AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45时,BE=
DE中,一定正确的有 . ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD,
轴,点
的坐标为
,点
的坐标为
,点
是四边形ABCD边上的一个动点.
(1)若四边形ABCD是菱形,求点
的坐标.
(2)如图1,若
,点
在第四象限内
①若点
在边
,
上,点
关于坐标轴对称的点
落在直线
上,求点
的坐标.
②若点
在边
,
,
上,点
是
与
轴的交点,如图2,过点
作
轴的平行线
,过点
作
轴的平行线
,它们相交于点
,将
沿直线
翻折,当点
的对应点落在坐标轴上时,求点
的坐标.(直接写出答案)
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知点C是线段BD上一点,以BC、 DC为一边在BD的同一侧作等边△ABC和等边△ECD,连接AD, BE相交于点F, AC和BE交于点M, AD, CE交于点N,(注:等边三角形的每一个内角都等于60° )
(1) 求证: AD=BE
(2) 线段CM与CN相等吗?请证明你的结论。
(3) 求∠BFD的度数。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形
中,
,点
分别从点
同时出发,点
以
的速度由点
向点
运动,点
以
的速度由点
向点
运动设运动时间为
.当
__________.时,
为平行四边形的一边.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB∥CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于F.
![]()
(1)若AB=2CD;
①求证:BC=2BF;
②连CE,若DE=6,CE=
,求EF的长;
(2)若AB=6,则CE的最小值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com