分析 利用函数图象,找出函数值为0时的自变量的值即可得到kx+b=0的解;写出函数图象在x轴下方所对应的自变量的范围即得到不等式kx+b<0的解集.
解答 解:根据函数图象,当x=2时,y=0,即kx+b=0;
当x>2时,y<0,即kx+b<0,
所以kx+b=0的解为x=2;不等式kx+b<0的解集为x>2.
故答案为x=2,x>2.
点评 本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
科目:初中数学 来源: 题型:选择题
| A. | a=5,b=6 | B. | a=1,b=-6 | C. | a=-1,b=-6 | D. | a=5,b=-6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com