精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形ABCD的边长为4,P是边BC上一点,QP⊥AP交DC于Q,问当点P在何位置时,△ADQ的面积最小并求出这个最小面积.
分析:设出一个变量,根据相似三角形的性质和三角形的面积公式,把最小面积问题转化为二次函数的最小值问题解答.
解答:解:设BP=x,
∵∠BAP+∠BPA=90°,∠BPA+∠CPQ=90°,
∴∠BAP=∠CPQ,又∠B=∠C=90°,
∴△ABP∽△PCQ,
AB
PC
=
BP
CQ

∴CQ=
BP•PC
AB
=
x(4-x)
4
=-
1
4
x2+x,
∴DQ=
1
4
x2-x+4
∴S△ADQ=
1
2
AD•DQ=
1
2
×4(
1
4
x2-x+4)
=
1
2
x2-2x+8,
∴当x=-
-2
1
2
=2时,S△ADQ=6.即当点P在BC中点时,△ADQ有最小值6.
点评:解答此题的关键是将面积问题转化为二次函数的最小值问题,体现了数形结合思想和转化思想在解题中的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案