精英家教网 > 初中数学 > 题目详情
6.在海上某固定观测点O处的北偏西60°方向,且距离O处40海里的A处,有一艘货轮正沿着正东方向匀速航行,2小时后,此货轮到达O处的北偏东45°方向的B处.在该货轮从A处到B处的航行过程中.
(1)求货轮离观测点O处的最短距离;
(2)求货轮的航速.

分析 (1)如图,作OH⊥AB,垂足为H.通过解Rt△AOH来求OH的长度即可;
(2)在Rt△AOH中,求得AH的长度;然后在Rt△BOH中,∠B=∠HOB=45°,则△BHO的等腰直角三角形,故HB=HO=20.易求AB=20$\sqrt{3}$+20,利用速度=路程÷时间进行计算.

解答 解:(1)如图,作OH⊥AB,垂足为H.
在Rt△AOH中,∵cos∠AOH=$\frac{OH}{AO}$.
∴OH=cos60°•AO=20.
即货轮离观测点O处的最短距离为20海里;

(2)在Rt△AOH中,∵sin∠AOH=$\frac{AH}{AO}$,
∴AH=sin60°•AO=20$\sqrt{3}$,
在Rt△BOH中,∵∠B=∠HOB=45°,
∴HB=HO=20.
∴AB=20$\sqrt{3}$+20,
∴货轮的航速为$\frac{20\sqrt{3}+20}{2}$=10$\sqrt{3}$+10(海里/小时).

点评 本题考查了解直角三角形的应用,难度适中.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.在平面直角坐标系中,点($\sqrt{3}$,1)绕原点顺时针旋转60°后得到点(  )
A.($\sqrt{3}$,-1)B.(-1,$\sqrt{3}$)C.(-$\sqrt{3}$,1)D.(1,-$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,从城市A到B城市的公路需经过城市C,图中AC=100千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两城市间修建一条笔直的公路.
(1)求改直的公路AB的长;
(2)问公路改直后比原来缩短了多少千米?
(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2.
①求$\frac{BE}{AD}$值;
②求∠FAB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC、∠BDC的平分线,交AC、BC于点E、F(尺规作图,不写作法,保留作图痕迹);
(2)求证:四边形CEDF是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在直角坐标系中,下面各点按顺序依次排列:
(0,1),(1,0),(0,-1),(0,2),(2,0),(0,-2),(0,3),(3,0),(0,-3),…
(1)这列点中的第1000个点的坐标是什么?
(2)(0,2012)是这列点中的第几个点?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知正方形ABCD,现将该正方形折叠,点A′与点A对应,点A′恰好落在射线DC上,设折痕所在直线交直线CD于点N,若AB=4,A′C=1,则DN的长为0.9.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图是由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(-3,5).

查看答案和解析>>

同步练习册答案