【题目】在2019年10月1日的建国70周年庆典上,有多国领导人出席观看了我国盛大的阅兵仪式.为表示友好,我国政府选择将刺绣和陶瓷两类工艺品作为国礼赠送给所有的来宾.甲,乙两个工厂分别承接了制作
,
两种刺绣与
种陶瓷的任务.甲工厂安排100名工人制作刺绣,每人只能制作其中一种刺绣,乙工厂安排50名工人制作
种陶瓷.
的人均制作数量比
的人均制作数量少3件,
的人均制作量比
的人均制作量少20%.若本次赠送的国礼(
,
,
三样礼品)的人均制作数量比
的人均制作数量少30%,且
的人均制作数量为偶数件,则本次赠送的国礼共制作了_________件.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、
B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.
![]()
(1)判断△ABC的形状: ;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于
的什么位置时,四边形APBC的面积最大?求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC是半⊙O的直径,点P是半圆弧的中点,点A是弧BP的中点,AD⊥BC于D,连结AB、PB、AC,BP分别与AD、AC相交于点E、F.
![]()
(1)求证:AE=BE;
(2)判断BE与EF是否相等吗,并说明理由;
(3)小李通过操作发现CF=2AB,请问小李的发现是否正确?若正确,请说明理由;若不正确,请写出CF与AB正确的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初中数学代数知识中,方程、函数、不等式存在着紧密的联系,请阅读下列两则材料,回答问题:
利用函数图象找方程
解的范围.设函数
,当
时,
;当
时,
.则函数
的图象经过两个点
与
,而点
在
轴下方,点
在
轴上方,则该函数图象与
轴交点横坐标必大于-2,小于-1.故,方程
的有解,且该解的范围为
.
材料二:
解一元二次不等式
.由“异号两数相乘,结果为负可得:
情况①
,得
,则![]()
情况②
,得
,则无解
故,
的解集为
.
(1)请根据材料一解决问题:已知方程
有唯一解
,且
(
为整数),求整数
的值.
(2)请结合材料一与材料二解决问题:若关于
的方程
的解分别为
,
,且
,
,求
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,已知点F(2
,0),直线GF交y轴正半轴于点G,且∠GFO=30°.
![]()
(1)直接写出点G的坐标;
(2)若⊙O的半径为1,点P是直线GF上的动点,直线PA、PB分别约⊙O相切于点A、B.
①求切线长PB的最小值;
②问:在直线GF上是够存在点P,使得∠APB=60°,若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是 _____________________ .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com