精英家教网 > 初中数学 > 题目详情
12.教学实验:画∠AOB的平分线OC.
(1)将一块最够大的三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别于OA,OB交于E,F(如图①).度量PE、PF的长度,PE=PF(填>,<,=);
(2)将三角尺绕点P旋转(如图②):
①PE与PF相等吗?若相等请进行证明,若不相等请说明理由;
②若OP=$\sqrt{2}$,请直接写出四边形OEPF的面积:1.

分析 (1)由题意容易得出结果;
(2)①把三角尺绕点P顺时针旋转,使三角尺的两条直角边分别与OA,OB垂直于M、N,证出四边形OMPN是正方形,由ASA证明△PEM≌△PFN,得出对应边相等即可.
②由①得出四边形OMPN是正方形,△PEM≌△PFN,由正方形的性质得出OM=ON=$\frac{\sqrt{2}}{2}$OP=1,四边形OEPF的面积=正方形OMPN的面积=OM2=1即可.

解答 (1)解:PE=PF;
     故答案为:=;
(2)解:①PE=PF;理由如下:
把三角尺绕点P顺时针旋转,使三角尺的两条直角边分别与OA,OB垂直于M、N,如图所示:
则∠PME=∠PNF=90°,四边形OMPN是矩形
∵OP平分∠AOB,
∴PM=PN,
∴四边形OMPN是正方形,
∵∠AOB=∠PME=∠PNF=90°,
∴∠MPN=90°,
∵∠EPF=90°,
∴∠MPE=∠FPN,
在△PEM和△PFN中$\left\{\begin{array}{l}∠PME=∠PNF\\ PM=PN\\∠MPE=∠NPF\end{array}\right.$
∴△PEM≌△PFN(ASA),
∴PE=PF.
②由①得:四边形OMPN是正方形,△PEM≌△PFN,
∴OM=ON=$\frac{\sqrt{2}}{2}$OP=1,四边形OEPF的面积=正方形OMPN的面积=OM2=1;
故答案为:1.

点评 本题考查了正方形的判定与性质、旋转的性质、全等三角形的判定与性质、勾股定理、正方形面积的计算;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,点A,B,C在直线l上,则图中共有3条线段,有6条射线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.
(1)求y与x之间的函数关系式;
(2)如图2,当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,并已知某函数,y=ax2+bx+c(a≠0,其中a、b、c是常数)经过G,O,B三点,求出a、b、c,并写出这个函数的解析式;
(3)现有一动点P在(2)中的函数图象上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.扬州今年冬季某天测得的最低气温是-6℃,最高气温是5℃,则当日温差是11℃.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成7部分…;
把上述探究的结果进行整理,列表分析:
 直线条数 把平面分成部分数 写成和形式
 1 2 1+1
 2 4 1+1+2
 3 7 1+1+2+3
 4 11 1+1+2+3+4
(1)当直线条数为5时,把平面最多分成16部分,写成和的形式1+1+2+3+4+5;
(2)当直线为n条时,把平面最多分成$\frac{{n}^{2}+n+2}{2}$部分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程组:$\left\{\begin{array}{l}{0.5x+0.7y=35}\\{x+0.4y=40}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=$\frac{4}{3}$x的图象的交点为C(m,4).点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为(  )
A.(-2,5)B.(-5,3)C.(-2,5)或(-5,3)D.(5,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下面画的数轴正确的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案