精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
分析:(1)根据条件证明△OCF≌△GCF,由全等的性质就可以得出OF=GF而得出结论;
(2)在BF上截取BH=CF,连接OH.通过条件可以得出△OBH≌△OCF.可以得出OH=OF,从而得出OG∥FH,OH∥FG,进而可以得出四边形OHFG是平行四边形,就可以得出结论.
解答:(1)解:∵CF平分∠OCE,
∴∠OCF=∠ECF.
∵OC=CG,CF=CF,
∵在△OCF和△GCF中,
OC=GC
∠OCF=∠ECF
CF=CF

∴△OCF≌△GCF(SAS).
∴FG=OF=4,
即FG的长为4.

(2)证明:在BF上截取BH=CF,连接OH.
∵四边形ABCD为正方形,
∴AC⊥BD,∠DBC=45°,
∴∠BOC=90°,
∴∠OCB=180°-∠BOC-∠DBC=45°.
∴∠OCB=∠DBC.
∴OB=OC.
∵BF⊥CF,
∴∠BFC=90°.
∵∠OBH=180°-∠BOC-∠OMB=90°-∠OMB,
∠OCF=180°-∠BFC-∠FMC=90°-∠FMC,
且∠OMB=∠FMC,
∴∠OBH=∠OCF.
∵在△OBH和△OCF中
OB=OC
∠OBH=∠OCF
BH=CF

∴△OBH≌△OCF(SAS).
∴OH=OF,∠BOH=∠COF.
∵∠BOH+∠HOM=∠BOC=90°,
∴∠COF+∠HOM=90°,即∠HOF=90°.
∴∠OHF=∠OFH=
1
2
(180°-∠HOF)=45°.
∴∠OFC=∠OFH+∠BFC=135°.
∵△OCF≌△GCF,
∴∠GFC=∠OFC=135°,
∴∠OFG=360°-∠GFC-∠OFC=90°.
∴∠FGO=∠FOG=
1
2
(180°-∠OFG)=45°.
∴∠GOF=∠OFH,∠HOF=∠OFG.
∴OG∥FH,OH∥FG,
∴四边形OHFG是平行四边形.
∴OG=FH.
∵BF=FH+BH,
∴BF=OG+CF.
点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,平行四边形的判定及性质的运用,解答时采用截取法作辅助线是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案