精英家教网 > 初中数学 > 题目详情
13.如图(1),点E为矩形ABCD边AD上一点,点P,Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图(2),则下列正确的是(  )
A.AE=6cmB.sin∠EBC=$\frac{4}{5}$
C.当0<t≤10时,y=$\frac{2}{5}{t}^{2}$D.当t=12时,△BPQ是等腰三角形

分析 由图2可知,在点(5,10)至点(7,10)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:
(1)在BE段,BP=BQ;持续时间5s,则BE=BC=5;y是t的二次函数;
(2)在ED段,y=10是定值,持续时间2s,则ED=2;
(3)在DC段,y持续减小直至为0,y是t的一次函数.

解答 解:(1)分析函数图象可知,BC=5cm,ED=2cm,故AE=AD-ED=BC-ED=5-2=3cm,故A错误;
(2)如答图1所示,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=5cm,S△BEC=10=$\frac{1}{2}$BC•EF=$\frac{1}{2}$×5×EF,∴EF=4,
∴sin∠EBC=$\frac{EF}{BE}=\frac{4}{5}$,故B正确;
(3)如答图2所示,当0<t≤5时,
过点P作PG⊥BQ于点G,
∵BQ=BP=t,
∴y=S△BPQ=$\frac{1}{2}$BQ•PG=$\frac{1}{2}$BQ•BP•sin∠EBC=$\frac{1}{2}$t•t•$\frac{4}{5}$=$\frac{2}{5}$t2(0<t≤5),故C错误;
(4)sin∠EBC=$\frac{EF}{BE}=\frac{4}{5}$,AE=3cm,所以AB=CD=4cm,所以t=11时,P到达C点停止运动,故D错误.
故选:B.

点评 本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=5cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t-5t2,小球运动中的最大高度是45米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象经过坐标原点,得到抛物线C1.将抛物线C1向下平移后经过点A(0,-2)进而得到新的抛物线C2,直线l经过点A和点B(2,0),求直线l和抛物线C2的解析式;
(3)在直线l下方的抛物线C2上有一点C,求点C到直线l的距离的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某学校组织学生到距离学校6千米的科技馆去参观,小华因事没能乘上学校的包车,于是准备在学校门口改乘出租车去科技馆,出租车标注收费有两种类型,如表:
里程甲类收费(元)乙类收费(元)
3千米以下(包含3千米)  5.00  6.00
3千米以上,每增加1千米  1.60  1.30
(1)设出租车行驶的里程为x千米(x≥3且x取正整数),分别写出两种类型的总收费y(用含x的代数式表示);
(2)小华身上仅有10元,他乘出租车到科技馆车费够不够?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线y=kx-2与x轴,y轴分别交于点B,C,且OC=2OB,A为直线BC上一动点.
(1)求B点的坐标和k的值;
(2)当△AOB的面积是4时,求A点在第一象限的坐标;
(3)在(2)的条件下,在x轴上是否存在一点P,使△POA是等腰三角形?若存在,请直接写出满足条件的所有P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.
(1)若PB平分∠ABO,求证:AP=CD;
(2)若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在矩形ABCD中,AB=6,BC=8,将矩形ABCD沿对角线AC对折,然后放在桌面上,折叠后所成的图形覆盖的面积(阴影部分的面积)是29.25.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某大学生利用暑假社会实践参与了一家网店经营,该网店以每个20元的价格购进900个某新型商品.第一周以每个35元的价格售出300个,第二周若按每个35元的价格销售仍可售出300个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个).
(1)若第二周降低价格1元售出,则第一周,第二周分别获利多少元?
(2)若第二周单价降低x元销售一周后,商店对剩余商品清仓处理,以每个15元的价格全部售出,如果这批商品计划获利9500元,问第二周每个商品的单价应降低多少元?

查看答案和解析>>

同步练习册答案