精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形ABCD的对角线交于点O,点E是线段0D上一点,连接EC,作BF⊥CE于点F,交0C于点G.
(1)求证:BG=CE;
(2)若AB=4,BF是∠DBC的角平分线,求OG的长.
分析:(1)先根据正方形的性质得到相等的线段和角证得,△BOG≌△CEO(AAS),所以BG=CE;
(2)利用BF是∠DBC的角平分线求得∠1=∠8,结合BF=BF,∠9=∠6可证明△BEF≌△BCF(ASA),所以BE=BC=4,根据Rt△BOC中对应的比例关系和三角函数可求得BO=2
2
,所以OE=BE-BO=4-2
2
.根据△BOG≌△COE可知OG=OE=4-2
2
解答:精英家教网(1)证明:∵正方形ABCD中,AC、BD相交于O,
∴BO=CO,BO⊥CO,
∵BF⊥EC,
∴∠5=∠6=∠7=90°,
∵∠3=∠4,
∴∠1=∠2,
∴△BOG≌△CEO,(AAS)(3分)
∴BG=CE.(1分)

(2)解:方法1:∵BF是∠DBC的角平分线,
∴∠1=∠8,
∵BF=BF,∠9=∠6=90°,
∴△BEF≌△BCF(ASA),(2分)
∴BE=BC=4,(1分)
∵在Rt△BOC中,cos∠OBC=
BO
BC

cos45°=
BO
BC

BO=BC•cos45°=2
2
,(1分)
OE=BE-BO=4-2
2
,(1分)
∵△BOG≌△COE,
OG=OE=4-2
2
.(1分)
方法2:∵BF是∠DBC的角平分线,
∴∠1=∠8,
∵BF=BF,∠9=∠6=90°,
∴△BEF≌△BCF(ASA),
∴BE=BC=4,
∵四边形BCD是正方形
∴∠AOB=90°,AO=BO
设AO为x,
由勾股定理,得
2x2=42
解得x=2
2

∵△BOG≌△COE
∴OG=OE
∵OE=BE-BO=4-2
2

∴OG=4-2
2
点评:主要考查了正方形的性质和全等三角形的判定.要掌握正方形中一些特殊的性质:四边相等,四角相等,对角线相等且互相平分.可利用这些等量关系求得三角形全等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案