分析 (1)由弦切角等于同弧所对的圆周角得:∠C=∠ABD,再根据直角三角形两锐角互余得出结论;
(2)作弦心距,由勾股定理得:OE=3,再证明△OEB∽△BDA,列比例式可以求AD的长.
解答
证明:(1)∵BD为⊙O的切线,
∴∠C=∠ABD,
∵AD⊥BD,
∴∠ADB=90°,
∴∠BAD+∠ABD=90°,
∴∠C+∠BAD=90°,
(2)连接OB,过O作OE⊥AB于E,
∴AE=BE=$\frac{1}{2}$AB=4,
由勾股定理得:OE=$\sqrt{O{B}^{2}-B{E}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∵BD为⊙O的切线,
∴OB⊥BD,
∴∠OBD=90°,
∵∠ADB=90°,
∴AD∥OB,
∴∠DAB=∠ABO,
∵∠D=∠OEB=90°,
∴△OEB∽△BDA,
∴$\frac{BE}{AD}=\frac{OB}{AB}$,
∴$\frac{4}{AD}=\frac{5}{8}$,
∴AD=$\frac{32}{5}$;
则线段AD的长为$\frac{32}{5}$.
点评 本题考查了切线的性质和垂径定理、以及三角形的外接圆,是常考题型,熟练掌握切线的性质和垂径定理:圆的切线垂直于经过切点的半径.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 720元 | B. | 800元 | C. | 880元 | D. | 1080元 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com