精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,正方形OABC的顶点坐标分别为O(0,0)、A(100,0)、B(100,100)、C(0,100).若正方形OABC内部(边界及顶点除外)一格点P满足:S△POA×S△PBC=S△PAB×S△POC,就称格点P为“好点”,则正方形OABC内部“好点”的个数为(  )个.(注:所谓“格点”,是指平面直角坐标系中横、纵坐标均为整点)
分析:首先设该P点的坐标为(x、y),且0<x<100、0<y<100并为正整数.根据S△POA×S△PBC=S△PAB×S△POC,列出关于x、y的关系式,再分解因式,求得满足条件的P点坐标个数.
解答:解:设该P点的坐标为(x、y),且0<x<100、0<y<100并为正整数.
由题意得x(100-x)=y(100-y),
∴x2-y2=100(x-y)?(x-y)(x+y-100)=0
∴x=y或x+y-100=0
当x=y时,解得满足条件的P点坐标有99个;
当x+y-100=0时,解得满足条件的P点坐标由99个;
又∵(50,50)为公共交点.
∴正方形OABC内部“好点”的个数为99+99-1=197
故选B.
点评:本题考查正方形的性质、坐标与图形性质.对于本题同学们一定要认真阅读理清题意,再就是不要忽视公共交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案