精英家教网 > 初中数学 > 题目详情
2.如图,在直线上有A、B两点,AB=10cm,⊙A的半径是1cm,⊙B的半径是2cm,⊙A以3cm/s的速度向右运动,同时⊙B以1cm/s的速度向右运动.设运动时间为t秒,当⊙A与⊙B相切时,t的值是3.5、4.5、5.5、6.5.

分析 在两圆运动过程中,从外切、内切、内切、外切四种情况解答即可.

解答 解:如图1,10-3t+t=3,
解得t=3.5;
如图2,10-3t+t=1,
解得t=4.5;
如图3,3t-t=10+1,
解得t=5.5;
如图4,3t-t=10+3,
解得t=6.5.
故答案为:3.5、4.5、5.5、6.5.

点评 本题考查的是圆和圆的位置关系,能够考虑到两圆相切的所有情形、掌握两圆相切时圆心距与两圆半径的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=$\frac{m}{x}$(m≠0)的图象交于A (-3,1),B (1,n)两点.
(1)求反比例函数和一次函数的表达式;
(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小华用两块不全等的等腰直角三角形的三角板摆放图形.
(1)如图①所示两个等腰直角△ABC,△DBE,两直角边交于点F,连接BF、AD,求证:BF=AD;
(2)如果小华将两块三角板△ABC,△DBE如图②所示摆放,使D、B、C三点在一条直线上,AC、DE的延长线相交于点F,过点F作FG∥BC,交直线AE于点G,连接AD,FB,求证:FG=AC+DC;
(3)在(2)的条件下,若AG=7$\sqrt{2}$,DC=5,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于P、Q两点(如图③),若PG=2,求线段FQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,四边形纸片ABCD中,AB∥CD,AD⊥AB,AB=10,AD=2$\sqrt{3}$,CD=4,点E是线段AB上的一动点,点F是射线AD上的一动点.将△AEF沿EF翻折,点A的落点记为P,连接PD.
(1)当AE=4,且点P刚好落在CD边上时,则线段PD长为2;
(2)若点P始终落在四边形ABCD内部,则线段PD长的变化范围是$\frac{4\sqrt{13}-10}{3}<PD<\frac{2\sqrt{127}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知四边形ABCD中,∠ABC=90°,AB∥CD,BC=12,AB>6,点E为BC的中点,连接AE,ED,△ABE与△AFE关于直线AE对称,且点F在AD上
(1)求证:CD=DF;
(2)设AB=y,CD=x,写出y与x之间的关系式;
(3)过点F作FM∥CD交ED于点M,连接CM
①判断四边形DFMC的形状,并证明;
②若AB=6$\sqrt{3}$,求△EMF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是(  )
A.CE=DEB.AE=OEC.$\widehat{BC}$=$\widehat{BD}$D.△OCE≌△ODE

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.
(1)请判断△OEF的形状,并证明你的结论;
(2)若AB=13,AC=10,请求出线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一个多边形,除了一个内角之外,其余内角之和为2680°,求这个内角的大小.

查看答案和解析>>

同步练习册答案