精英家教网 > 初中数学 > 题目详情
18.如图,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的凸四边形叫做筝形.AC,BD叫作筝形的对角线.请你通过观察、测量、折纸等方法进行探究,并回答以下问题:
(1)判断下列结论是否正确;
a.∠DAB=∠DCB;√
b.∠ABC=∠ADC;× 
c.BD分别平分∠ABC和∠ADC√
d.筝形是轴对称图形,它有两条对称轴.×
(2)请你选择下列问题中的一个进行证明:
a.从(1)中选择一个正确的结论进行证明;
b.通过探究,再找到一条筝形的性质,并进行证明.

分析 (1)用SSS直接判断出△ADB≌△CDB,即可得出结论;
(2)分别判断出点D,B都在线段AC的垂直平分线,即可得出结论.

解答 解(1)在△ADB和△CDB中,$\left\{\begin{array}{l}{AD=CD}\\{AB=CB}\\{BD=BD}\end{array}\right.$,
∴△ADB≌△CDB,
∴∠DAB=∠DCB,∠ADB=∠CDB,∠ABD=∠CBD,
所以a、c正确.
明显∠ADC≠∠ABC,有一条对称轴是BD所在的直线;
所以b,d错误;
故答案为:√,×,√,
(2)a,在△ADB和△CDB中,$\left\{\begin{array}{l}{AD=CD}\\{AB=CB}\\{BD=BD}\end{array}\right.$,
∴△ADB≌△CDB,
∴∠DAB=∠DCB,∠ADB=∠CDB,∠ABD=∠CBD,
b、筝形的两条对角线互相垂直;
理由:
∵AD=CD,
∴点D在线段AC的垂直平分线上,
∵AB=CB,
∴点B在线段AC的垂直平分线上,
∴BD是AC的垂直平分线,
∴筝形的两条对角线互相垂直.

点评 此题是四边形综合题,主要考查了全等三角形的判定和性质,垂直平分线的判定,对称性,解本题的关键是判断出△ADB≌△CDB,是一道比较简单的试题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.2014年宁波市举行“足球迷”杯足球比赛,共有奇数个足球队参加,每个队都同其他队比赛一场,记分办法为胜一场得1分、平一场得0.5分,负一场得0分.已知其中有两队共得10分,其他队的平均分为整数,求参加此次比赛的足球队共有几支?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0),B(0,4).
(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
(3)如图3,过点A(2,0)的直线y=kx-2k交y轴负半轴于点P,N点的横坐标为-1,过N点的直线y=$\frac{k}{2}$x-$\frac{k}{2}$交AP于点M.求$\frac{PM-PN}{AM}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.综合与实践
问题情境
    在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α.
操作发现
(1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是平行四边形.
(2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论.
拓展探索
(3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,三角形纸片ABC中,∠BCA=90°,在AC上取一点E,以BE为折痕进行翻折,使AB的一部分与BC重合,A与BC延长线上的点D重合,若∠A=30°,AC=6,则,DE的长度为(  )
A.6B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,⊙O的直径CD=12cm,AB是⊙O的弦,AB⊥CD,垂足为E,OE:OC=1:3,则AB的长为(  )
A.2$\sqrt{2}$cmB.4$\sqrt{2}$cmC.6$\sqrt{2}$cmD.8$\sqrt{2}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,已知正方形ABCD边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连结PQ、DQ、CQ、BQ.设AP=x.

(1)BQ+DQ的最小值是$\sqrt{2}$,此时x的值是$\sqrt{2}$-1;
(2)如图2,若PQ的延长线交CD边于E,并且∠CQD=90°.
①求证:QE﹦EC;    
②求x的值.
(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.一支钢笔a元,书包的单价比钢笔的单价的3倍多5元,则书包的单价是(3a+5)元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.双曲线y=$\frac{2}{x}$的图象在第一、三象限.

查看答案和解析>>

同步练习册答案