分析 由条件可先证明EC∥DB,可得到∠D=∠ABD,再结合条件两直线平行的判定可证明AC∥DF,依次填空即可.
解答
解:∵∠1=∠2(已知)
且∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴EC∥DB(同位角相等,两直线平行)
∴∠C=∠ABD(两直线平行,同位角相等)
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代换)
∴AC∥DF(内错角相等,两直线平行)
故答案为:对顶角相等;BD,CE;两条直线平行,同位角相等;∠ABD,∠D;内错角相等,两条直线平行.
点评 本题主要考查了平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{14}$×$\sqrt{7}$=7$\sqrt{2}$ | B. | ($\sqrt{2}$-1)2016($\sqrt{2}$+1)2016=1 | ||
| C. | $\root{3}{(-8)^{3}}$=-8 | D. | 3$\sqrt{2}$-$\sqrt{2}$=3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com