分析 (1)根据切线的性质得到DF⊥OD,由于OD⊥AC,推出DF∥AC,根据平行线的性质得到∠CAB=∠BFD,于是得到结论;
(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.
解答 解:(1)∵DF与⊙O相切,
∴DF⊥OD,
∵OD⊥AC,
∴DF∥AC,
∴∠CAB=∠BFD,
∴∠CAB=∠CDB,
∴∠CDB=∠BFD;
(2)∵半径OD垂直于弦AC于点E,AC=8,
∴AE=$\frac{1}{2}$AC=$\frac{1}{2}×8=4$.
∵AB是⊙O的直径,
∴OA=OD=$\frac{1}{2}$AB=$\frac{1}{2}×10$=5,
在Rt△AEO中,OE=$\sqrt{O{A}^{2}-A{E}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∵AC∥DF,
∴△OAE∽△OFD.
∴$\frac{OE}{OD}=\frac{AE}{DF}$,
∴$\frac{3}{5}$=$\frac{4}{DF}$,
∴DF=$\frac{20}{3}$.
点评 此题主要考查了切线的性质,相似三角形的判定与性质,勾股定理,得出△OAE∽△OFD是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{12}{7}$或2 | C. | $\frac{12}{7}$ | D. | $\frac{12}{5}$或2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com