精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 根据勾股定理,可得AB的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.

解答 解:在Rt△ABC中,由勾股定理,得
AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5.
sinB=$\frac{AC}{AB}$=$\frac{4}{5}$,
故选:C.

点评 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.解方程:$1+\frac{x-1}{2}=\frac{x+2}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c>0;④当-1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若点P(1,a)与Q(b,2)关于x轴对称,则代数式(a+b)2015的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面问题:
$\frac{1}{1+\sqrt{2}}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
$\frac{1}{\sqrt{5}+2}$=$\frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)}$=$\sqrt{5}$-2.
试求:
(1)$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为正整数)的值.
(2)利用上面所揭示的规律计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$+$\frac{1}{\sqrt{2015}+\sqrt{2016}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在$\frac{1}{x},\frac{3}{x+y},\frac{1}{2},\frac{2xy}{π},-\frac{x+1}{3}$中,分式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.把2ab2-4ba+2a分解因式的结果是(  )
A.2ab(b-2)+2aB.2a(b2-2b)C.2a(b+1)(b-1)D.2a(b-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,Rt△MBC中,∠MCB=90°,点M在数轴-1处,点C在数轴1处,MA=MB,BC=1,则数轴上点A对应的数是(  )
A.$\sqrt{5}$+1B.-$\sqrt{5}$+1C.-$\sqrt{5}$-lD.$\sqrt{5}$-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AB是⊙O的直径,AC是弦,半径OD⊥AC于点E,过点D的切线与BA延长线交于点F.
(1)求证:∠CDB=∠BFD;
(2)若AB=10,AC=8,求DF的长.

查看答案和解析>>

同步练习册答案