精英家教网 > 初中数学 > 题目详情
14.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为5.5.

分析 根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.

解答 解:∵AB=AC,AD是△ABC的中线,
∴AD⊥BC,∠BAD=∠CAD=$\frac{1}{2}$∠BAC=$\frac{1}{2}$×120°=60°,
∵AE是∠BAD的角平分线,
∴∠DAE=∠EAB=$\frac{1}{2}$∠BAD=$\frac{1}{2}$×60°=30°,
∵DF∥AB,
∴∠F=∠BAE=30°,
∴∠DAE=∠F=30°,
∴AD=DF,
∵∠B=90°-60°=30°,
∴AD=$\frac{1}{2}$AB=$\frac{1}{2}$×11=5.5,
∴DF=5.5.
故答案为:5.5.

点评 本题考查了等腰三角形的性质,平行线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.
(1)求证:△ADB≌△CDE;
(2)求∠MDN的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是(-1,3).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,△ABC,AB=AC,点D在AC上,DA=DB=BC,则∠BDA=108度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,矩形空地的长为13米,宽为8米,计划在其中修建两块相同的矩形绿地,它们的面积之和为28平方米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,E为垂足,且S四边形ABCD=9,则AE=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上.

(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知:在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=3,b=4,c=$\sqrt{7}$;②a2:b2:c2=6:8:10;③∠A:∠B:∠C=3:4:5;④∠A=2∠B,∠C=3∠B.其中能判断△ABC是直角三角形的条件为(  )
A.①②B.①④C.②④D.②③

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程组:$\left\{\begin{array}{l}{x}^{2}-3xy+2{y}^{2}=0\\{x}^{2}+{y}^{2}=1\end{array}\right.$.

查看答案和解析>>

同步练习册答案