精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线y=
k
x
(x>0)
与边BC交于点D(4,m),与边AB交于点E(2,n).
(1)求n关于m的函数关系式;
(2)若BD=2,tan∠BAC=
1
2
,求k的值和点B的坐标.
(1)∵点D(4,m),点E(2,n)在双曲线y=
k
x
(x>0)
上,
∴4m=2n,解得n=2m;

(2)过点E作EF⊥BC于点F,
∵由(1)可知n=2m,
∴DF=m,
∵BD=2,
∴BF=2-m,
∵点D(4,m),点E(2,n),
∴EF=4-2=2,
∵EFx轴,
∴tan∠BAC=tan∠BEF=
BF
EF
=
2-m
2
=
1
2
,解得m=1,
∴D(4,1),
∴k=4×1=4,B(4,3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

直线l经过A(1,0)且与双曲线y=
m
x
(x>0)
在第一象限交于点B(2,1),过点P(p+1,p-1)(p>1)作x轴的平行线分别交于双曲线y=
m
x
(x>0)
和y=-
m
x
(x<0)于M,N两点,
(1)求m的值及直线l的解析式;
(2)直线y=-x-3与x轴、y轴分别交于点C、D,点E在直线y=-x-3上,且点E在第三象限,使得
CE
ED
=2
,平移线段ED得线段HQ(点E与H对应,点D与Q对应),使得H、Q恰好都落在y=
m
x
的图象上,求H、Q两点坐标.
(3)是否存在实数p,使得S△AMN=4S△APM?若存在,求所有满足条件的p的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=ax+b的图象与反比例函数y=
k
x
的图象交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=
10
,点B的坐标为(m,-2),tan∠AOC=
1
3

(1)求反比例函数、一次函数的解析式;
(2)求三角形ABO的面积;
(3)在y轴上存在一点P,使△PDC与△CDO相似,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,反比例函数y=
k
x
的图象经过点A(-
3
,b),过点A作AB垂直x轴于点B,△AOB的面积为
3

(1)求k和b的值;
(2)若一次函数y=ax+1的图象经过点A,并且与x轴相交于点M,求△AOM的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,若反比例函数y=-
8
x
与一次函数y=mx-2的图象都经过点A(a,2)
(1)求A点的坐标及一次函数的解析式;
(2)设一次函数与反比例函数图象的另一交点为B,求B点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在同一直角坐标系中,正比例函数y=kx与反比例函数y=
2
3
x
的图象分别交于第一、三象限的点B,D,已知点A(-a,O)、C(a,0).
(1)直接判断并填写:四边形ABCD的形状一定是______;
(2)①当点B为(p,2)时,四边形ABCD是矩形,试求p,k,和a的值;
②观察猜想:对①中的a值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形OABC的面积是4,点B在反比例函数y=
k
x
(k>0,x<0)的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是______.(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对某校九年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图(图1)和扇形统计图(图2).根据图中信息,这些学生的平均分数是______分.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若数2,3,x,5,6五个数的平均数为4,则x的值为______.

查看答案和解析>>

同步练习册答案