18£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=x2-2x-3¾­¹ýxÖáÉϵÄA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Ïß¶ÎBCÓëÅ×ÎïÏߵĶԳÆÖáÏཻÓÚµãD£¬µãEΪyÖáÉϵÄÒ»¸ö¶¯µã£®
 £¨1£©ÇóÖ±ÏßBCµÄº¯Êý½âÎöʽ£¬²¢Çó³öµãDµÄ×ø±ê£»
£¨2£©ÉèµãEµÄ×Ý×ø±êΪΪm£¬ÔÚµãEµÄÔ˶¯¹ý³ÌÖУ¬µ±¡÷BDEÖÐΪ¶Û½ÇÈý½ÇÐÎʱ£¬ÇómµÄȡֵ·¶Î§£»
£¨3£©Èçͼ2£¬Á¬½áDE£¬½«ÉäÏßDEÈÆµãD˳ʱÕë·½ÏòÐýת90¡ã£¬ÓëÅ×ÎïÏß½»µãΪG£¬Á¬½áEG£¬DGµÃµ½Rt¡÷GED£®ÔÚµãEµÄÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚÕâÑùµÄRt¡÷GED£¬Ê¹µÃÁ½Ö±½Ç±ßÖ®±ÈΪ2£º1£¿Èç¹û´æÔÚ£¬Çó³ö´ËʱµãGµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ïȸù¾ÝÅ×ÎïÏßÓëxÖáµÄ½»µãÎÊÌâÇó³öA£¨-1£¬0£©£¬B£¨3£¬0£©£¬ÀûÓöԳÆÐԿɵÃÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=1£¬ÔÙÇó³öC£¨0£¬-3£©£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóÖ±ÏßBCµÄ½âÎöʽ£»µ±x=1ʱ£¬y=-x+3=-3£¬ÔòDµã×ø±êΪ£¨1£¬-2£©£»
£¨2£©Èçͼ1£¬ÏÈÅжϡ÷OBCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ôò¡ÏOCB=¡ÏOBC=45¡ã£¬ÔÙ¼ÆËã³öCD=$\sqrt{2}$£¬È»ºóͨ¹ýÇó³ö¡÷BDEΪֱ½ÇÈý½ÇÐÎʱmµÄÖµÀ´È·¶¨¡÷BDEΪ¶Û½ÇÈý½ÇÐÎʱ£¬mµÄȡֵ·¶Î§£»
£¨3£©·ÖÀàÌÖÂÛ£º¢Ùµ±µãGÔÚ¶Ô³ÆÖáÓÒ²àµÄÅ×ÎïÏßÉÏʱ£¬Èçͼ2£¬×÷DF¡ÍyÖáÓÚF£¬GH¡ÍDFÓÚH£¬ÉèG£¨t£¬t2-2t-3£©£¬ÔòGH=t2-2t-3-£¨-2£©=t2-2t-1£¬ÓÉÐýתµÄÐÔÖʵáÏEDG=90¡ã£¬½Ó×ÅÖ¤Ã÷Rt¡÷EDF¡×Rt¡÷DGH£¬ÀûÓÃÏàËÆµÄÐÔÖʵÃ$\frac{DF}{GH}$=$\frac{DE}{DG}$£¬Èô$\frac{DE}{DG}$=2£¬Ôò$\frac{1}{GH}$=2£¬Ôòt2-2t-1=$\frac{1}{2}$£¬½âµÃt1=1-$\frac{\sqrt{10}}{2}$£¨ÉáÈ¥£©£¬t2=1+$\frac{\sqrt{10}}{2}$£¬´ËʱGµã×ø±êΪ£¨1+$\frac{\sqrt{10}}{2}$£¬-$\frac{3}{2}$£©£»Èô$\frac{DE}{DG}$=$\frac{1}{2}$£¬Ôò$\frac{1}{GH}$=$\frac{1}{2}$£¬Ôòt2-2t-1=2£¬½âµÃt1=-1£¨ÉáÈ¥£©£¬t2=3£¬´ËʱGµã×ø±êΪ£¨3£¬0£©£»¢Úµ±µãGÔÚ¶Ô³ÆÖá×ó²àµÄÅ×ÎïÏßÉÏʱ£¬ÓÃͬÑùµÄ·½·¨¿ÉµÃGµã×ø±êΪ£¨1-$\frac{\sqrt{10}}{2}$£¬-$\frac{3}{2}$£©»ò£¨-1£¬0£©£®

½â´ð ½â£º£¨1£©µ±y=0ʱ£¬x2-2x-3=0£¬½âµÃx1=-1£¬x2=3£¬ÔòA£¨-1£¬0£©£¬B£¨3£¬0£©
ËùÒÔÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=1£¬
µ±x=0ʱ£¬y=x2-2x-3=-3£¬ÔòC£¨0£¬-3£©£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
°ÑB£¨3£¬0£©£¬C£¨0£¬-3£©´úÈëµÃ$\left\{\begin{array}{l}{3k+b=0}\\{b=-3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=-3}\end{array}\right.$£¬
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=x-3£»
µ±x=1ʱ£¬y=-x+3=-3£¬ÔòDµã×ø±êΪ£¨1£¬-2£©£»
£¨2£©Èçͼ1£¬¡ßB£¨3£¬0£©£¬C£¨0£¬-3£©
¡à¡÷OBCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡à¡ÏOCB=¡ÏOBC=45¡ã£¬
¡ßD£¨1£¬-2£©£¬
¡àCD=$\sqrt{{1}^{2}+£¨-2+3£©^{2}}$=$\sqrt{2}$£¬
µ±¡ÏEDB=90¡ãʱ£¬Ôò¡÷CDEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àCE=$\sqrt{2}$CD=$\sqrt{2}$¡Á$\sqrt{2}$=2£¬
¡àOE=3-2=1£¬´ËʱE£¨0£¬-1£©£¬
¡àµ±m£¼-1ÇÒm¡Ù-3ʱ£¬¡ÏEDBΪ¶Û½Ç£¬¡÷EDBΪ¶Û½ÇÈý½ÇÐΣ»
µ±¡ÏEBD=90¡ãʱ£¬Ôò¡÷OBEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àOE=OB=3£¬´ËʱE£¨0£¬3£©£¬
¡àµ±m£¾3ʱ£¬¡ÏEDBΪ¶Û½Ç£¬¡÷EDBΪ¶Û½ÇÈý½ÇÐΣ»
¡àmµÄȡֵ·¶Î§Îªm£¾3»òm£¼-1ÇÒm¡Ù-3£»
£¨3£©´æÔÚ£®
¢Ùµ±µãGÔÚ¶Ô³ÆÖáÓÒ²àµÄÅ×ÎïÏßÉÏʱ£¬Èçͼ2£¬×÷DF¡ÍyÖáÓÚF£¬GH¡ÍDFÓÚH£¬
ÉèG£¨t£¬t2-2t-3£©£¬ÔòGH=t2-2t-3-£¨-2£©=t2-2t-1£¬
¡ßÉäÏßDEÈÆµãD˳ʱÕë·½ÏòÐýת90¡ã£¬ÓëÅ×ÎïÏß½»µãΪG£¬
¡à¡ÏEDG=90¡ã£¬
¡à¡ÏEDF+¡ÏGDH=90¡ã£¬
¶ø¡ÏEDF+¡ÏDEF=90¡ã£¬
¡à¡ÏDEF=¡ÏGDH£¬
¡àRt¡÷EDF¡×Rt¡÷DGH£¬
¡à$\frac{DF}{GH}$=$\frac{DE}{DG}$£¬
Èô$\frac{DE}{DG}$=2£¬Ôò$\frac{1}{GH}$=2£¬¼´t2-2t-1=$\frac{1}{2}$£¬½âµÃt1=1-$\frac{\sqrt{10}}{2}$£¨ÉáÈ¥£©£¬t2=1+$\frac{\sqrt{10}}{2}$£¬´ËʱGµã×ø±êΪ£¨1+$\frac{\sqrt{10}}{2}$£¬-$\frac{3}{2}$£©£»
Èô$\frac{DE}{DG}$=$\frac{1}{2}$£¬Ôò$\frac{1}{GH}$=$\frac{1}{2}$£¬¼´t2-2t-1=2£¬½âµÃt1=-1£¨ÉáÈ¥£©£¬t2=3£¬´ËʱGµã×ø±êΪ£¨3£¬0£©£»
¢Úµ±µãGÔÚ¶Ô³ÆÖá×ó²àµÄÅ×ÎïÏßÉÏʱ£¬ÓÃͬÑùµÄ·½·¨¿ÉµÃGµã×ø±êΪ£¨1-$\frac{\sqrt{10}}{2}$£¬-$\frac{3}{2}$£©»ò£¨-1£¬0£©£¬
×ÛÉÏËùÊö£¬Gµã×ø±êΪ£¨1+$\frac{\sqrt{10}}{2}$£¬-$\frac{3}{2}$£©»ò£¨3£¬0£©»ò£¨1-$\frac{\sqrt{10}}{2}$£¬-$\frac{3}{2}$£©»ò£¨-1£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖʺ͵ÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨ÇóÖ±Ïß½âÎöʽ£»»áÔËÓÃÏàËÆ±È¼ÆËãÏ߶εij¤£®ÄѵãÊÇÈçºÎ¹¹½¨ÏàËÆÈý½ÇÐκͷÖÀàÌÖÂÛ˼ÏëµÄÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬¡÷ABCÖУ¬¡ÏBAC=45¡ã£¬AD¡ÍBC£¬BD=1£¬CD=3£¬½«¡÷ABDÑØABÕÛµþµÃµ½¡÷ABE£¬½«¡÷ACDÑØACÕÛµþµÃµ½¡÷ACF£¬ÑÓ³¤EBºÍFC½»ÓÚµãG£®
£¨1£©Åж¨ËıßÐÎAEGFµÄÐÎ×´£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçͼËùʾ£¬B´¦ÔÚA´¦µÄÄÏÆ«Î÷45¡ã·½ÏòÉÏ£¬C´¦ÔÚA´¦µÄÄÏÆ«¶«30¡ã·½Ïò£¬C´¦ÔÚB´¦µÄ±±Æ«¶«85¡ã£¬Çó¡ÏACBÊǶàÉÙ¶È£¿£¨Ìáʾ£ºÔÚÈý½ÇÐÎABCÖУ¬¡ÏBAC+¡ÏABC+¡ÏACB=180¡ã£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬µãEÊÇÕý·½ÐÎABCDÄÚÒ»µã£¬Á¬½áAE¡¢BE¡¢DE£®ÈôAE=2£¬BE=$\sqrt{15}$£¬¡ÏAED=135¡ã£¬ÔòÕý·½ÐÎABCDµÄÃæ»ýΪ11+2$\sqrt{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªµãM£¨1-2m£¬m-1£©ÔÚµÚËÄÏóÏÞ£¬ÔòmµÄȡֵ·¶Î§ÊÇm$£¼\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£ºÈçͼ£¬AB¡ÎCD£®

£¨1£©Èçͼ1£¬²ÂÏ벢д³ö¡ÏB¡¢¡ÏD¡¢¡ÏEÖ®¼äµÄÊýÁ¿¹ØÏµ£¬Í¼2¡¢Í¼3¡¢Í¼4ÊÇÈýÖÖ²»Í¬½Ç¶È˼¿¼²ÉÓõIJ»Í¬Ìí¼Ó¸¨ÖúÏߵķ½Ê½£¬ÇëÄãÑ¡ÔñÆäÖеÄÁ½ÖÖ·½Ê½ËµÃ÷ÀíÓÉ£®
£¨2£©ÔÚͼ4ÖУ¬Èç¹ûBE¡¢DE·Ö±ðƽ·Ö¡ÏABD¡¢¡ÏCDB£¬Ôò¡ÏEµÄ¶ÈÊýÊǶàÉÙ£¿£¨Ö±½Óд³ö´ð°¸£©
£¨3£©¸ù¾ÝÒÔÉÏÍÆÀí£¬Ö±½Óд³öͼ5¡¢Í¼6¡¢Í¼7ÖеġÏB¡¢¡ÏD¡¢¡ÏEÖ®¼äµÄÊýÁ¿¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬¡÷A1B1C1ÊÇ¡÷ABCÏòÓÒÆ½ÒÆ4¸öµ¥Î»³¤¶ÈºóµÃµ½µÄ£¬ÇÒÈý¸ö¶¥µãµÄ×ø±ê·Ö±ðΪA1£¨1£¬1£©£¬B1£¨4£¬2£©£¬C1£¨3£¬4£©£®
£¨1£©Çë»­³ö¡÷ABC£¬²¢Ð´³öµãA£¬B£¬CµÄ×ø±ê£»
£¨2£©Çó³ö¡÷AOA1µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ä³Ð£ÈËÊýÏàµÈµÄ¼×¡¢ÒÒÁ½¸ö°àͬʱ½øÐвâÑ飬°à¼¶µÄƽ¾ù·ÖºÍ·½²î·Ö±ðΪ£º$\overline{{x}_{¼×}}$=78·Ö£¬$\overline{{x}_{ÒÒ}}$=78·Ö£¬s¼×2=180£¬sÒÒ2=80£¬ÄÇô³É¼¨½ÏΪÕûÆëµÄÊÇ£¨¡¡¡¡£©
A£®¼×°àB£®Á½¸ö°àÒ»ÑùÕûÆëC£®ÒÒ°àD£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®°ÑÒ»ÕÅÁ½×é¶Ô±ß·Ö±ðƽÐеÄÖ½ÌõÕÛµþ£¬ÈçͼËùʾ£¬EFÊÇÕÛºÛ£¬Èô¡ÏEFB=34¡ã£¬Ôò¡ÏBFD¶ÈÊýΪ112¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸