精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形ABCD的边长为4,现沿对角线所在直线L向右移动得到正方形A′B′C′D′,其中四边形PA′QC面积为1,则A到A′的距离为
 
分析:正方形ABCD沿对角线所在直线L向右移动得到四边形PA'QC,可知为正方形,根据其面积可将对角线A′C的长求出,再根据正方形ABCD的边长可将对角线AC的长求出,从而可将AA′的长求出.
解答:解:正方形ABCD沿对角线所在直线L向右移动得到四边形PA'QC,可知为正方形
∵SPA'QC=PC×PA′=1,∴PC=PA′=1,A′C=
2

∵正方形ABCD的边长为4∴AC=4
2

∴AA′=AC-A′C=3
2

故答案为3
2
点评:解答本题要充分利用正方形的特殊性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案