分析 延长AN、AM分别交BC于点D、G,根据BM为∠ABC的角平分线,AM⊥BM得出∠BAM=∠G,故△ABG为等腰三角形,所以BM也为等腰三角形的中线,即AM=GM.同理AN=DN,根据三角形中位线定理即可得出结论.
解答 证明:延长AN、AM分别交BC于点D、G.如图所示:![]()
∵BM为∠ABC的角平分线,
∴∠CBM=∠ABM,
∵BM⊥AG,
∴∠ABM+∠BAM=90°,∠G+∠CBM=90°,
∴∠BAM=∠G,
∴△ABG为等腰三角形,
∴BM也为等腰三角形的中线,即AM=GM.
同理AN=DN,
∴MN为△ADG的中位线,
∴MN∥BC.
点评 本题考查了等腰三角形的判定与性质、三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 | 6 |
| y | 600 | 300 | 200 | 150 | 120 | 100 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com