精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的边长为cm,对角线AC,BD相交于点O,过O作OD1⊥AB于D1,过D1作D1D2⊥BD于点D2,过D2作D2D3⊥AB于D3,…,依此类推.其中的OD1+D2D3+D4D5+D6D7=    cm.
【答案】分析:根据正方形的对角线互相垂直平分,知OD1是△ABD的中位线,结合三角形中位线定理可得OD1=8,依此类推,运用三角形的中位线定理,可得D2D3、D4D5、D6D7=的值;相加可得OD1+D2D3+D4D5+D6D7的值.
解答:解:正方形ABCD的边长为cm,对角线AC,BD相交于点O,
故OD1是△ABD的中位线,即OD1=8
依此类推,可得D2D3=4,D4D5=2,D6D7=
进而可得OD1+D2D3+D4D5+D6D7=15
故答案为15
点评:重点运用了三角形的中位线定理:三角形的中位线是三角形的第三边的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案