【题目】如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC. OM⊥ AD,ON⊥BC,垂足分别为M、N.连接PM、PN.
![]()
![]()
图1 图2
(1)求证:△ADP ∽△CBP;
(2)当AB⊥CD时,探究
PMO与
PNO的数量关系,并说明理由;
(3)当AB⊥CD时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON的面积.
【答案】(1)证明见解析;(2)
PMO=
PNO,理由见解析;(3)S平行四边形PMON=6![]()
【解析】
(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥ AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.
(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.
(2)
PMO=
PNO
因为OM⊥ AD,ON⊥BC,
所以点M、N为AB、CD的中点,
又AB⊥CD,
所以PM=
AD,PN=
BC,
所以,∠A=∠APM,∠C=∠CPN,
所以∠AMP=∠CNP,得到
PMO与
PNO.
(3)连接CO并延长交圆O于点Q,连接BD.
![]()
因为AB⊥CD,AM=
AD,CN=
BC,
所以PM=
AD,PN=
BC.
由三角形中位线性质得,ON=
.
因为CQ为圆O直径,所以∠QBC=90°,
则∠Q+∠QCB=90°,
由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,
所以∠QCB=∠PBD,所以BQ=AD,
所以PM=ON.
同理可得,PN=OM.所以四边形MONP为平行四边形.
S平行四边形PMON=6![]()
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D处,OD与BC交于点E.OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA>OC).
(1)求A、C的坐标.
(2)直接写出点E的坐标,并求出过点A、E的直线函数关系式.
(3)点F是x轴上一点,在坐标平面内是否存在点P,使以点O、B、P、F为顶点的四边形为菱形?若存在请直接写出P点坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连接CD,点O是CD的中点,到点O的距离等于OC的所有点组成图形M,图形M分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与图形M的位置关系,并说明理由;
(2)若AC=3,∠B=30°,求FG的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解朝阳社区
岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
![]()
(1)求参与问卷调查的总人数.
(2)补全条形统计图.
(3)该社区中
岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
,点
是线段
的一个三等分点,以点
为圆心,
为半径的圆交
于点
,交
于点
,连接![]()
![]()
(1)求证:
是
的切线;
(2)点
为
上的一动点,连接
.
①当
时,四边形
是菱形;
②当
时,四边形
是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
![]()
![]()
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和m的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】使用家用燃气灶烧开同一壶水所需的燃气量
(单位:
)与旋钮的旋转角度
(单位:度)(
)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度
与燃气量
的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为
,A、B为⊙O上两点,C为⊙O内一点,AC⊥BC,AC=
,BC=
.
(1)判断点O、C、B的位置关系;
(2)求图中阴影部分的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.
(1)如图1,在对半四边形
中,
,求
与
的度数之和;
(2)如图2,
为锐角
的外心,过点
的直线交
,
于点
,
,
,求证:四边形
是对半四边形;
(3)如图3,在
中,
,
分别是
,
上一点,
,
,
为
的中点,
,当
为对半四边形
的对半线时,求
的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com