精英家教网 > 初中数学 > 题目详情
AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合).∠ABC=n°,∠ADC=80°.
(1)若点B在点A的左侧,求∠BED的度数(用含n的代数式表示);
(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.
分析:(1)过点E作EF∥AB,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出∠ABE=
1
2
∠ABC=
1
2
n°,∠CDE=
1
2
∠ADC=40°,代入∠BED=∠BEF+∠DEF求出即可;
(2)过点E作EF∥AB,根据角平分线定义得出∠ABE=
1
2
∠ABC=
1
2
n°,∠CDE=
1
2
∠ADC=40°,根据平行线性质得出∠BEF=180°-∠ABE=180°-
1
2
n°,∠CDE=∠DEF=40°,代入∠BED=∠BEF+∠DEF求出即可.
解答:解:(1)过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,
∴∠ABE=
1
2
∠ABC=
1
2
n°,∠CDE=
1
2
∠ADC=40°,
∴∠BED=∠BEF+∠DEF=
1
2
n°+40°;

(2)∠BED的度数改变,
过点E作EF∥AB,如图,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,
∴∠ABE=
1
2
∠ABC=
1
2
n°,∠CDE=
1
2
∠ADC=40°,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-
1
2
n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-
1
2
n°+40°=220°-
1
2
n°.
点评:本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、平面内的两条直线有相交和平行两种位置关系

(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,联结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.

(1)若
ED
=
BE
,求∠F的度数;
(2)设CO=x,EF=y写出y与x之间的函数解析式,并写出定义域;
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角梯形ABCD中,AD∥BC,∠B=90°,∠B=90°,∠C=60°,AD=CD,点E在射线BC上,将△ABE沿AE翻折,点B落到点F处,射线EF与射线CD交于点M.
(1)当点M在CD边上时(如图a),求证:FM一DM=
3
3
AB

(2)当点E在BC边的延长线上时(如图b),线段FM、DM、AB的数量关系
DM-FM=
3
3
AB
DM-FM=
3
3
AB

(3)在(2)的条件下,过A点作AG⊥CM,垂足为点G,设直线BG与直线AM交于点N,若AD=6,FM=1,求GN的长

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=
25°
25°

(2)如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;
(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.

查看答案和解析>>

同步练习册答案