2£®¶Ôx£¬y¶¨ÒåÒ»ÖÖÐÂÔËËãT£¬¹æ¶¨£ºT£¨x£¬y£©=ax+2by-1£¨ÆäÖÐa¡¢b¾ùΪ·ÇÁã³£Êý£©£¬ÕâÀïµÈʽÓÒ±ßÊÇͨ³£µÄËÄÔòÔËË㣬ÀýÈ磺T£¨0£¬1£©=a•0+2b•1-1=2b-1£®
£¨1£©ÒÑÖªT£¨1£¬-1£©=-2£¬T£¨4£¬2£©=3£®
¢ÙÇóa£¬bµÄÖµ£»
¢ÚÈô¹ØÓÚmµÄ²»µÈʽ×é$\left\{\begin{array}{l}{T£¨2m£¬5-4m£©¡Ü4}\\{T£¨m£¬3-2m£©£¾p}\end{array}\right.$Ç¡ºÃÓÐ2¸öÕûÊý½â£¬ÇóʵÊýpµÄȡֵ·¶Î§£»
£¨2£©ÈôT£¨x£¬y£©=T£¨y£¬x£©¶ÔÈÎÒâʵÊýx£¬y¶¼³ÉÁ¢£¨ÕâÀïT£¨x£¬y£©ºÍT£¨y£¬x£©¾ùÓÐÒâÒ壩£¬Ôòa£¬bÓ¦Âú×ãÔõÑùµÄ¹ØÏµÊ½£¿

·ÖÎö £¨1£©¢Ù¸ù¾Ý¶¨ÒåµÄÐÂÔËËãT£¬Áгö¶þÔªÒ»´Î·½³Ì×飬½â·½³Ì×éÇó³öa£¬bµÄÖµ£»
¢Ú¸ù¾Ý£¨1£©Çó³öµÄa£¬bµÄÖµºÍÐÂÔËËãÁгö·½³Ì×éÇó³ömµÄȡֵ·¶Î§£¬¸ù¾ÝÌâÒâÁгö²»µÈʽ£¬½â²»µÈʽÇó³öʵÊýpµÄȡֵ·¶Î§£»
£¨2£©¸ù¾ÝÐÂÔËËãÁгöµÈʽ£¬¸ù¾Ýx£¬yµÄϵÊýΪ0£¬Çó³öa£¬bÓ¦Âú×ãµÄ¹ØÏµÊ½£®

½â´ð ½â£º£¨1£©¢Ù$\left\{\begin{array}{l}{a-2b-1=-2}\\{4a+4b-1=3}\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}{a=\frac{1}{3}}\\{b=\frac{2}{3}}\end{array}\right.$£»
¢Ú$\left\{\begin{array}{l}{\frac{2m}{3}+\frac{4£¨5-4m£©}{3}-1¡Ü4}\\{\frac{m}{3}+\frac{4£¨3-2m£©}{3}-1£¾p}\end{array}\right.$£¬
½âµÃ$\frac{5}{14}$¡Üm£¼$\frac{9-3p}{7}$£¬
ÒòΪԭ²»µÈʽ×éÓÐ2¸öÕûÊý½â£¬
ËùÒÔ2£¼$\frac{9-3p}{7}$¡Ü3£¬
½âµÃ£¬-4¡Üp£¼-$\frac{5}{3}$£»
£¨2£©T£¨x£¬y£©=ax+2by-1£¬T£¨y£¬x£©=ay+2bx-1£¬
ËùÒÔax+2by-1=ay+2bx-1£¬
ËùÒÔ£¨a-2b£©£¨x-y£©=0
ËùÒÔa=2b£®

µãÆÀ ±¾Ì⿼²éµÄÊǶþÔªÒ»´Î·½³Ì×éµÄ½â·¨¡¢Ò»ÔªÒ»´Î²»µÈʽ×éµÄ½â·¨ºÍÒ»ÔªÒ»´Î²»µÈʽ×éµÄÕûÊý½âµÄÈ·¶¨£¬ÕÆÎÕ¶þÔªÒ»´Î·½³Ì×éµÄ½â·¨¡¢Ò»ÔªÒ»´Î²»µÈʽ×éµÄ½â·¨ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬ÁâÐÎABCDµÄ¶Ô½ÇÏßAC¡¢BD½»ÓÚµãO£¬AC=6cm£¬BD=8cm£¬µãEÊDZßBCµÄÖе㣬Á¬½ÓOE£¬ÔòOE=2.5cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£º¡÷ABCÊǵȱßÈý½ÇÐΣ¬µãDÊÇÉäÏßBCÉϵÄÒ»¸ö¶¯µã£¨µãD²»ÓëµãB¡¢CÖØºÏ£©£¬¡÷ADEÊÇÒÔADΪ±ßµÄµÈ±ßÈý½ÇÐΣ¬¹ýµãE×÷BCµÄƽÐÐÏߣ¬·Ö±ð½»ÉäÏßAB¡¢ACÓÚµãF¡¢G£¬Á¬½ÓBE£®
£¨1£©ÇóÖ¤£º¡÷AEB¡Õ¡÷ADC£»
£¨2£©Ì½¾¿ËıßÐÎBCGEÊÇÔõÑùÌØÊâµÄËıßÐΣ¿²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÈçͼbËùʾ£¬µ±µãDÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎBCGEÊÇÁâÐΣ¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ÊǶþÔªÒ»´Î·½³Ìmx+ny=6µÄÁ½×é½â£¬Ôòm£¬nµÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
A£®4£¬2B£®2£¬4C£®-4£¬-2D£®-2£¬-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{\frac{2x+1}{3}¡Ý-3}\\{1-2x£¾7}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô¡Ï1+¡Ï2=180¡ã£¬Ôòl1¡Îl2B£®Èô¡Ï2=¡Ï3£¬Ôòl1¡Îl2
C£®Èô¡Ï1+¡Ï2+¡Ï3=180¡ã£¬Ôòl1¡Îl2D£®Èô¡Ï2+¡Ï4=180¡ã£¬Ôòl1¡Îl2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªa£¬b¶¼ÊÇÕýÊý£¬»¯¼ò$\sqrt{8{a}^{2}b}$µÄ½á¹ûÊÇ$2a\sqrt{2b}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬Ð¡Ã÷´ÓAµã³ö·¢£¬ÑØÖ±Ïßǰ½ø12Ã׺óÏò×óת36¡ã£¬ÔÙÑØÖ±Ïßǰ½ø12Ã×£¬ÓÖÏò×óת36¡ã¡­ÕÕÕâÑù×ßÏÂÈ¥£¬ËûµÚÒ»´Î»Øµ½³ö·¢µØAµãʱ£¬Ò»¹²×ßÁË120Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬¡÷ABCÖУ¬¡ÏBAC=45¡ã£¬AD¡ÍBC£¬BD=1£¬CD=3£¬½«¡÷ABDÑØABÕÛµþµÃµ½¡÷ABE£¬½«¡÷ACDÑØACÕÛµþµÃµ½¡÷ACF£¬ÑÓ³¤EBºÍFC½»ÓÚµãG£®
£¨1£©Åж¨ËıßÐÎAEGFµÄÐÎ×´£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸