| A. | 4对 | B. | 6对 | C. | 8对 | D. | 9对 |
分析 利用有两组角对应相等的两个三角形相似可判定△FAE∽△CBE∽△FBD∽△CAD,再根据圆周角定理得到点A、B、D、E四点共圆,则∠BAD=∠BED,于是可判定△ABF∽△EDF,利用∠DEC=∠ABC可判定△CDE∽△CAB.
解答 解:∵AD⊥BC于D,BE⊥AC于E,
∴∠ADC=∠AEC=90°,![]()
∴△FAE∽△CAD,△FBD∽△CBE,
而∠ACD=∠BCE,
∴△CAD∽△CBE,
∴△FAE∽△CBE,△FAE∽△FBD,△FBD∽△CAD,
∵∠AEB=∠ADB,
∴点E、点D在以AB为直角的圆上,
即点A、B、D、E四点共圆,
∴∠BAD=∠BED,
∴△ABF∽△EDF,
∵∠DEC=∠ABC,
∴△CDE∽△CAB,
故选C.
点评 本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.
科目:初中数学 来源: 题型:选择题
| A. | 24 | B. | 36 | C. | 48 | D. | 60 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m=n | B. | m>n | ||
| C. | m<n | D. | m、n的大小关系不确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com