分析 (1)对于直线y=x+1,令x=0求出y的值,确定出A的坐标,把B坐标代入y=kx+b中求出b的值,再将D坐标代入y=x+1求出n的值,进而将D坐标代入求出k的值即可;
(2)由两一次函数解析式,结合图象确定出x的范围即可;
(3)过D作DE垂直于x轴,如图1所示,四边形AOCD面积等于梯形AOED面积减去三角形CDE面积,求出即可;
(4)在x轴上存在点P,使得以点P,C,D为顶点的三角形是直角三角形,理由为:分两种情况考虑:①DP′⊥DC;②DP⊥CP,分别求出P坐标即可.
解答 解:(1)对于直线y=x+1,令x=0,得到y=1,即A(0,1),
把B(0,-1)代入y=kx+b中,得:b=-1,
把D(1,n)代入y=x+1得:n=2,即D(1,2),
把D坐标代入y=kx-1中得:2=k-1,即k=3,
故答案为:2,3,-1;
(2)∵一次函数y=x+1与y=3x-1交于D(1,2),
∴由图象得:函数y=kx+b的函数值大于函数y=x+1的函数值时x的取值范围是x>1;
故答案为:x>1;
(3)过D作DE⊥x轴,垂足为E,如图1所示,![]()
则S四边形AOCD=S梯形AOED-S△CDE=$\frac{1}{2}$(AO+DE)•OE-$\frac{1}{2}$CE•DE=$\frac{1}{2}$×(1+2)×1-$\frac{1}{2}$×$\frac{2}{3}$×2=$\frac{3}{2}$-$\frac{2}{3}$=$\frac{5}{6}$;
(4)在x轴上存在点P,使得以点P,C,D为顶点的三角形是直角三角形,理由为:
如图2所示,分两种情况考虑:![]()
①当P′D⊥DC时,可得kP′D•kDC=-1,
∵直线DC斜率为3,
∴直线P′D斜率为-$\frac{1}{3}$,
∵D(1,2),
∴直线P′D解析式为y-2=-$\frac{1}{3}$(x-1),
令y=0,得到x=7,即P′(7,0);
②当DP⊥CP时,由D横坐标为1,得到P横坐标为1,
∵P在x轴上,
∴P的坐标为(1,0).
点评 此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,直角三角形的性质,坐标与图形性质,待定系数法确定一次函数解析式,利用了数形结合的思想,熟练掌握一次函数的性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com